利用航空高光谱数据绘制滨海湿地红树林群落

Xiong Zhou, A. Armitage, S. Prasad
{"title":"利用航空高光谱数据绘制滨海湿地红树林群落","authors":"Xiong Zhou, A. Armitage, S. Prasad","doi":"10.1109/WHISPERS.2016.8071659","DOIUrl":null,"url":null,"abstract":"Mapping and monitoring coastal wetlands and mangrove distributions as well as changes in cover help us better manage wetlands. The purpose of this study is to study the efficacy of airborne hyperspectral remote sensing to map and detect black mangroves (Avicennia germinans) in coastal wetlands in Galveston, TX. To overcome the scarcity of labeled mangrove data, superpixel segmentation is used to expand the limited training set for subsequent classification and detection. The spatial distributions of black mangrove are then predicted with a support vector machine (SVM) classifier. The presence of black mangrove is also tested with two standard target detection approaches, including modified generalized likelihood ratio test (GLRT), and constrained energy minimization (CEM). The experimental results indicate that the black mangrove species can be effectively distinguished using hyperspectral images, from other wetland vegetation and background classes while requiring very limited labeling effort.","PeriodicalId":369281,"journal":{"name":"2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS)","volume":"139 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Mapping mangrove communities in coastal wetlands using airborne hyperspectral data\",\"authors\":\"Xiong Zhou, A. Armitage, S. Prasad\",\"doi\":\"10.1109/WHISPERS.2016.8071659\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mapping and monitoring coastal wetlands and mangrove distributions as well as changes in cover help us better manage wetlands. The purpose of this study is to study the efficacy of airborne hyperspectral remote sensing to map and detect black mangroves (Avicennia germinans) in coastal wetlands in Galveston, TX. To overcome the scarcity of labeled mangrove data, superpixel segmentation is used to expand the limited training set for subsequent classification and detection. The spatial distributions of black mangrove are then predicted with a support vector machine (SVM) classifier. The presence of black mangrove is also tested with two standard target detection approaches, including modified generalized likelihood ratio test (GLRT), and constrained energy minimization (CEM). The experimental results indicate that the black mangrove species can be effectively distinguished using hyperspectral images, from other wetland vegetation and background classes while requiring very limited labeling effort.\",\"PeriodicalId\":369281,\"journal\":{\"name\":\"2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS)\",\"volume\":\"139 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WHISPERS.2016.8071659\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WHISPERS.2016.8071659","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

绘制和监测沿海湿地和红树林的分布以及覆盖范围的变化有助于我们更好地管理湿地。本研究的目的是研究航空高光谱遥感对德克萨斯州加尔维斯顿沿海湿地黑红树林(Avicennia germinans)的测绘和检测效果。为了克服标记红树林数据的稀缺性,使用超像素分割来扩展有限的训练集,以便后续分类和检测。利用支持向量机(SVM)分类器预测黑红树林的空间分布。采用改进的广义似然比检验(GLRT)和约束能量最小化(CEM)两种标准目标检测方法对黑红树林的存在进行了检测。实验结果表明,使用高光谱图像可以有效地将黑红树林物种与其他湿地植被和背景类别区分开来,而只需要非常有限的标记工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mapping mangrove communities in coastal wetlands using airborne hyperspectral data
Mapping and monitoring coastal wetlands and mangrove distributions as well as changes in cover help us better manage wetlands. The purpose of this study is to study the efficacy of airborne hyperspectral remote sensing to map and detect black mangroves (Avicennia germinans) in coastal wetlands in Galveston, TX. To overcome the scarcity of labeled mangrove data, superpixel segmentation is used to expand the limited training set for subsequent classification and detection. The spatial distributions of black mangrove are then predicted with a support vector machine (SVM) classifier. The presence of black mangrove is also tested with two standard target detection approaches, including modified generalized likelihood ratio test (GLRT), and constrained energy minimization (CEM). The experimental results indicate that the black mangrove species can be effectively distinguished using hyperspectral images, from other wetland vegetation and background classes while requiring very limited labeling effort.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信