{"title":"基于资源的教育建筑节能建议规则引擎","authors":"G. Cuffaro, F. Paganelli, Georgios Mylonas","doi":"10.1109/GIOTS.2017.8016275","DOIUrl":null,"url":null,"abstract":"Raising awareness among young people on the relevance of behaviour change for achieving energy savings is widely considered as a key approach towards long-term and cost-effective energy efficiency policies. The GAIA Project aims to deliver a comprehensive solution for both increasing awareness on energy efficiency and achieving energy savings in school buildings. In this framework, we present a novel rule engine that, leveraging a resource-based graph model encoding relevant application domain knowledge, accesses IoT data for producing energy savings recommendations. The engine supports configurability, extensibility and ease-of-use requirements, to be easily applied and customized to different buildings. The paper introduces the main design and implementation details and presents a set of preliminary performance results.","PeriodicalId":413939,"journal":{"name":"2017 Global Internet of Things Summit (GIoTS)","volume":"92 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A resource-based rule engine for energy savings recommendations in educational buildings\",\"authors\":\"G. Cuffaro, F. Paganelli, Georgios Mylonas\",\"doi\":\"10.1109/GIOTS.2017.8016275\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Raising awareness among young people on the relevance of behaviour change for achieving energy savings is widely considered as a key approach towards long-term and cost-effective energy efficiency policies. The GAIA Project aims to deliver a comprehensive solution for both increasing awareness on energy efficiency and achieving energy savings in school buildings. In this framework, we present a novel rule engine that, leveraging a resource-based graph model encoding relevant application domain knowledge, accesses IoT data for producing energy savings recommendations. The engine supports configurability, extensibility and ease-of-use requirements, to be easily applied and customized to different buildings. The paper introduces the main design and implementation details and presents a set of preliminary performance results.\",\"PeriodicalId\":413939,\"journal\":{\"name\":\"2017 Global Internet of Things Summit (GIoTS)\",\"volume\":\"92 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 Global Internet of Things Summit (GIoTS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GIOTS.2017.8016275\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Global Internet of Things Summit (GIoTS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GIOTS.2017.8016275","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A resource-based rule engine for energy savings recommendations in educational buildings
Raising awareness among young people on the relevance of behaviour change for achieving energy savings is widely considered as a key approach towards long-term and cost-effective energy efficiency policies. The GAIA Project aims to deliver a comprehensive solution for both increasing awareness on energy efficiency and achieving energy savings in school buildings. In this framework, we present a novel rule engine that, leveraging a resource-based graph model encoding relevant application domain knowledge, accesses IoT data for producing energy savings recommendations. The engine supports configurability, extensibility and ease-of-use requirements, to be easily applied and customized to different buildings. The paper introduces the main design and implementation details and presents a set of preliminary performance results.