基于冗余离散小波变换的多模态医学图像融合

Richa Singh, Mayank Vatsa, A. Noore
{"title":"基于冗余离散小波变换的多模态医学图像融合","authors":"Richa Singh, Mayank Vatsa, A. Noore","doi":"10.1109/ICAPR.2009.97","DOIUrl":null,"url":null,"abstract":"Medical image fusion has revolutionized medical analysis by improving the precision and performance of computer assisted diagnosis. In this research, a fusion algorithm is proposed to combine pairs of multispectral magnetic resonance imaging such as T1, T2 and Proton Density brain images. The proposed algorithm utilizes different features of Redundant Discrete Wavelet Transform, mutual information based non-linear registration and entropy information to improve performance. Experiments on the BrainWeb database show that the proposed fusion algorithm preserves both edge and component information, and provides improved performance compared to existing Discrete Wavelet Transform based fusion algorithms.","PeriodicalId":443926,"journal":{"name":"2009 Seventh International Conference on Advances in Pattern Recognition","volume":"175 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"90","resultStr":"{\"title\":\"Multimodal Medical Image Fusion Using Redundant Discrete Wavelet Transform\",\"authors\":\"Richa Singh, Mayank Vatsa, A. Noore\",\"doi\":\"10.1109/ICAPR.2009.97\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Medical image fusion has revolutionized medical analysis by improving the precision and performance of computer assisted diagnosis. In this research, a fusion algorithm is proposed to combine pairs of multispectral magnetic resonance imaging such as T1, T2 and Proton Density brain images. The proposed algorithm utilizes different features of Redundant Discrete Wavelet Transform, mutual information based non-linear registration and entropy information to improve performance. Experiments on the BrainWeb database show that the proposed fusion algorithm preserves both edge and component information, and provides improved performance compared to existing Discrete Wavelet Transform based fusion algorithms.\",\"PeriodicalId\":443926,\"journal\":{\"name\":\"2009 Seventh International Conference on Advances in Pattern Recognition\",\"volume\":\"175 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"90\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Seventh International Conference on Advances in Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAPR.2009.97\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Seventh International Conference on Advances in Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAPR.2009.97","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 90

摘要

医学图像融合通过提高计算机辅助诊断的精度和性能,彻底改变了医学分析。在本研究中,提出了一种融合算法,将多谱磁共振成像的T1、T2和质子密度脑图像对进行融合。该算法利用冗余离散小波变换的不同特征、基于互信息的非线性配准和熵信息来提高性能。在BrainWeb数据库上进行的实验表明,该融合算法保留了边缘和分量信息,与现有的基于离散小波变换的融合算法相比,具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multimodal Medical Image Fusion Using Redundant Discrete Wavelet Transform
Medical image fusion has revolutionized medical analysis by improving the precision and performance of computer assisted diagnosis. In this research, a fusion algorithm is proposed to combine pairs of multispectral magnetic resonance imaging such as T1, T2 and Proton Density brain images. The proposed algorithm utilizes different features of Redundant Discrete Wavelet Transform, mutual information based non-linear registration and entropy information to improve performance. Experiments on the BrainWeb database show that the proposed fusion algorithm preserves both edge and component information, and provides improved performance compared to existing Discrete Wavelet Transform based fusion algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信