活性炭吸附去除靛蓝胭脂红染料:动力学和等温线研究

S. Manjunath, C. N. Pratheek
{"title":"活性炭吸附去除靛蓝胭脂红染料:动力学和等温线研究","authors":"S. Manjunath, C. N. Pratheek","doi":"10.26634/jms.10.1.18957","DOIUrl":null,"url":null,"abstract":"In this study the removal of Indigo Carmine (IC) dye by batch adsorption using Commercial Activated Carbon (CAC) was carried out. The characterization of adsorbent was done by Structural Engineering and Materials (SEM) and Energy Dispersive X-Ray Analysis (EDX) to know the surface morphology and various elements present in the adsorbent. The operational parameters such as contact time (0-120 min), adsorbent dose (0.1-1g/L) and initial dye concentration (25-150 mg/L) was varied to know the effect of removal of indigo carmine dye from aqueous solution. The adsorption data was compared with various kinetic models as pseudo-first-order, pseudo-second-order, intra-particle diffusion, liquidfilm diffusion and Elovich models and isotherm models such as Langmuir, Freundlich, Temkin, Elovich and Dubinin and Radushkevich models. The optimum contact time and adsorbent dose was found to be 40 min and 0.8 g/L, respectively. The experimental data best fitted the pseudo-second-order kinetic model with R2 > 0.99 and Langmuir isotherm model (R2 = 0.997). The Langmuir's maximum adsorption capacity (qm) was 28.74 mg/g.","PeriodicalId":441295,"journal":{"name":"i-manager's Journal on Material Science","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Adsorptive removal of indigo carmine dye using activated carbon: kinetic and isotherm study\",\"authors\":\"S. Manjunath, C. N. Pratheek\",\"doi\":\"10.26634/jms.10.1.18957\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study the removal of Indigo Carmine (IC) dye by batch adsorption using Commercial Activated Carbon (CAC) was carried out. The characterization of adsorbent was done by Structural Engineering and Materials (SEM) and Energy Dispersive X-Ray Analysis (EDX) to know the surface morphology and various elements present in the adsorbent. The operational parameters such as contact time (0-120 min), adsorbent dose (0.1-1g/L) and initial dye concentration (25-150 mg/L) was varied to know the effect of removal of indigo carmine dye from aqueous solution. The adsorption data was compared with various kinetic models as pseudo-first-order, pseudo-second-order, intra-particle diffusion, liquidfilm diffusion and Elovich models and isotherm models such as Langmuir, Freundlich, Temkin, Elovich and Dubinin and Radushkevich models. The optimum contact time and adsorbent dose was found to be 40 min and 0.8 g/L, respectively. The experimental data best fitted the pseudo-second-order kinetic model with R2 > 0.99 and Langmuir isotherm model (R2 = 0.997). The Langmuir's maximum adsorption capacity (qm) was 28.74 mg/g.\",\"PeriodicalId\":441295,\"journal\":{\"name\":\"i-manager's Journal on Material Science\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"i-manager's Journal on Material Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26634/jms.10.1.18957\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"i-manager's Journal on Material Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26634/jms.10.1.18957","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

研究了商用活性炭(CAC)间歇吸附法去除靛蓝胭脂红(IC)染料。通过结构工程与材料(SEM)和能量色散x射线分析(EDX)对吸附剂进行表征,了解吸附剂的表面形貌和存在的各种元素。通过改变接触时间(0 ~ 120min)、吸附剂剂量(0.1 ~ 1g/L)和初始染料浓度(25 ~ 150mg /L)等操作参数,了解对靛蓝胭脂红染料的去除效果。将吸附数据与拟一阶、拟二阶、颗粒内扩散、液膜扩散和Elovich模型以及Langmuir、Freundlich、Temkin、Elovich、Dubinin和Radushkevich模型等等温模型进行了比较。最佳接触时间为40 min,吸附剂用量为0.8 g/L。实验数据最符合拟二级动力学模型(R2 > 0.99)和Langmuir等温模型(R2 = 0.997)。Langmuir最大吸附量为28.74 mg/g。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adsorptive removal of indigo carmine dye using activated carbon: kinetic and isotherm study
In this study the removal of Indigo Carmine (IC) dye by batch adsorption using Commercial Activated Carbon (CAC) was carried out. The characterization of adsorbent was done by Structural Engineering and Materials (SEM) and Energy Dispersive X-Ray Analysis (EDX) to know the surface morphology and various elements present in the adsorbent. The operational parameters such as contact time (0-120 min), adsorbent dose (0.1-1g/L) and initial dye concentration (25-150 mg/L) was varied to know the effect of removal of indigo carmine dye from aqueous solution. The adsorption data was compared with various kinetic models as pseudo-first-order, pseudo-second-order, intra-particle diffusion, liquidfilm diffusion and Elovich models and isotherm models such as Langmuir, Freundlich, Temkin, Elovich and Dubinin and Radushkevich models. The optimum contact time and adsorbent dose was found to be 40 min and 0.8 g/L, respectively. The experimental data best fitted the pseudo-second-order kinetic model with R2 > 0.99 and Langmuir isotherm model (R2 = 0.997). The Langmuir's maximum adsorption capacity (qm) was 28.74 mg/g.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信