Jianwei Yang, Shizheng Wang, Zhen Lei, Yanyun Zhao, S. Li
{"title":"基于时空LBP的压缩域运动目标分割","authors":"Jianwei Yang, Shizheng Wang, Zhen Lei, Yanyun Zhao, S. Li","doi":"10.1109/AVSS.2012.68","DOIUrl":null,"url":null,"abstract":"With the increasing amount of surveillance data, moving object segmentation in the compressed domain has drawn broad attention from both academy and industry. In this paper, we propose a novel moving object segmentation method towards H.264 compressed surveillance videos. First, the motion vectors (MV) are accumulated and filtered to achieve reliable motion information. Second, considering the spatial and temporal correlations among adjacent blocks, spatio-temporal Local Binary Pattern (LBP) features of MVs are extracted to obtain coarse and initial object regions. Finally, a coarse-to-fine segmentation algorithm of boundary modification is conducted based on the DCT coefficients. The experimental results validate that the proposed method not only can extract fairly accurate objects in compressed video, but also has a relatively low computational complexity.","PeriodicalId":275325,"journal":{"name":"2012 IEEE Ninth International Conference on Advanced Video and Signal-Based Surveillance","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Spatio-temporal LBP Based Moving Object Segmentation in Compressed Domain\",\"authors\":\"Jianwei Yang, Shizheng Wang, Zhen Lei, Yanyun Zhao, S. Li\",\"doi\":\"10.1109/AVSS.2012.68\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the increasing amount of surveillance data, moving object segmentation in the compressed domain has drawn broad attention from both academy and industry. In this paper, we propose a novel moving object segmentation method towards H.264 compressed surveillance videos. First, the motion vectors (MV) are accumulated and filtered to achieve reliable motion information. Second, considering the spatial and temporal correlations among adjacent blocks, spatio-temporal Local Binary Pattern (LBP) features of MVs are extracted to obtain coarse and initial object regions. Finally, a coarse-to-fine segmentation algorithm of boundary modification is conducted based on the DCT coefficients. The experimental results validate that the proposed method not only can extract fairly accurate objects in compressed video, but also has a relatively low computational complexity.\",\"PeriodicalId\":275325,\"journal\":{\"name\":\"2012 IEEE Ninth International Conference on Advanced Video and Signal-Based Surveillance\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE Ninth International Conference on Advanced Video and Signal-Based Surveillance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AVSS.2012.68\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Ninth International Conference on Advanced Video and Signal-Based Surveillance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AVSS.2012.68","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Spatio-temporal LBP Based Moving Object Segmentation in Compressed Domain
With the increasing amount of surveillance data, moving object segmentation in the compressed domain has drawn broad attention from both academy and industry. In this paper, we propose a novel moving object segmentation method towards H.264 compressed surveillance videos. First, the motion vectors (MV) are accumulated and filtered to achieve reliable motion information. Second, considering the spatial and temporal correlations among adjacent blocks, spatio-temporal Local Binary Pattern (LBP) features of MVs are extracted to obtain coarse and initial object regions. Finally, a coarse-to-fine segmentation algorithm of boundary modification is conducted based on the DCT coefficients. The experimental results validate that the proposed method not only can extract fairly accurate objects in compressed video, but also has a relatively low computational complexity.