Bharti Sharma, P. Neelakanta, V. Aalo, D. De Groff
{"title":"LTE环境下毫米波/太赫兹频率下纳米至飞蜂窝环境的室内射频信道特性","authors":"Bharti Sharma, P. Neelakanta, V. Aalo, D. De Groff","doi":"10.1109/ICRTIT.2013.6844273","DOIUrl":null,"url":null,"abstract":"RF channel characterization in forging conceivable short-range wireless links in nano-through femto-cells applications of WLAN/WPAN in long term evolution (LTE) context is considered. Relevant next-generation wireless-based indoor services are required to support multi-gigabit information transfer rates. As such, the associated electromagnetic (EM) spectral needs warrant accommodating almost unlimited wireless channels each shouldering enormous bandwidth. Relevant wireless transport requirements can be met with the span of EM spectra that currently remain unclaimed and unregulated. They exist as prospective resources in the frontiers of mm-wave range (spanning 30 GHz to terahertz band). Addressed in this study thereof is the feasibility of conceiving “inferential prototypes” of RF channel-models in the 30+ GHz through THz spectrum of indoor ambient by judiciously sharing the “similarity” of details pertinent to already existing (known) “models” of traditional, lower-side EM spectrum, (namely, VLF through micro-/mm-wave); and, an approach based on the principle of similitude due to Edgar Buckingham is invoked toward model-to-(inferential) prototype transformations. Examples on indoor path-loss estimation for line-of-sight (LoS) case is presented for the spectral range of interest and the efficacy of the proposal is outlined.","PeriodicalId":113531,"journal":{"name":"2013 International Conference on Recent Trends in Information Technology (ICRTIT)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Indoor RF-channel characterization of nano-through femto-cell ambient at millimeter-wave/THz frequencies in LTE contexts\",\"authors\":\"Bharti Sharma, P. Neelakanta, V. Aalo, D. De Groff\",\"doi\":\"10.1109/ICRTIT.2013.6844273\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"RF channel characterization in forging conceivable short-range wireless links in nano-through femto-cells applications of WLAN/WPAN in long term evolution (LTE) context is considered. Relevant next-generation wireless-based indoor services are required to support multi-gigabit information transfer rates. As such, the associated electromagnetic (EM) spectral needs warrant accommodating almost unlimited wireless channels each shouldering enormous bandwidth. Relevant wireless transport requirements can be met with the span of EM spectra that currently remain unclaimed and unregulated. They exist as prospective resources in the frontiers of mm-wave range (spanning 30 GHz to terahertz band). Addressed in this study thereof is the feasibility of conceiving “inferential prototypes” of RF channel-models in the 30+ GHz through THz spectrum of indoor ambient by judiciously sharing the “similarity” of details pertinent to already existing (known) “models” of traditional, lower-side EM spectrum, (namely, VLF through micro-/mm-wave); and, an approach based on the principle of similitude due to Edgar Buckingham is invoked toward model-to-(inferential) prototype transformations. Examples on indoor path-loss estimation for line-of-sight (LoS) case is presented for the spectral range of interest and the efficacy of the proposal is outlined.\",\"PeriodicalId\":113531,\"journal\":{\"name\":\"2013 International Conference on Recent Trends in Information Technology (ICRTIT)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Conference on Recent Trends in Information Technology (ICRTIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRTIT.2013.6844273\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Recent Trends in Information Technology (ICRTIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRTIT.2013.6844273","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Indoor RF-channel characterization of nano-through femto-cell ambient at millimeter-wave/THz frequencies in LTE contexts
RF channel characterization in forging conceivable short-range wireless links in nano-through femto-cells applications of WLAN/WPAN in long term evolution (LTE) context is considered. Relevant next-generation wireless-based indoor services are required to support multi-gigabit information transfer rates. As such, the associated electromagnetic (EM) spectral needs warrant accommodating almost unlimited wireless channels each shouldering enormous bandwidth. Relevant wireless transport requirements can be met with the span of EM spectra that currently remain unclaimed and unregulated. They exist as prospective resources in the frontiers of mm-wave range (spanning 30 GHz to terahertz band). Addressed in this study thereof is the feasibility of conceiving “inferential prototypes” of RF channel-models in the 30+ GHz through THz spectrum of indoor ambient by judiciously sharing the “similarity” of details pertinent to already existing (known) “models” of traditional, lower-side EM spectrum, (namely, VLF through micro-/mm-wave); and, an approach based on the principle of similitude due to Edgar Buckingham is invoked toward model-to-(inferential) prototype transformations. Examples on indoor path-loss estimation for line-of-sight (LoS) case is presented for the spectral range of interest and the efficacy of the proposal is outlined.