{"title":"基于d维量子行走的量子群签名","authors":"Yunxiao Qian, Haoyang Yu","doi":"10.1145/3546000.3546012","DOIUrl":null,"url":null,"abstract":"In this paper, a group signature scheme based on quantum walk for quantum messages is proposed. Our scheme uses long step quantum walk-based teleportation and modified quantum one-time pad to authenticate the quantum messages respectively. In our scheme, the signer in a group signs the quantum messages by quantum walk-based teleportation and modified quantum one-time pad. The verifier can verify the signature via quantum walk-based teleportation while the group manager verifies the signature and identifies the signer via modified quantum one-time pad. The security analysis shows that the scheme can reach the properties of group signature. Compared to the teleportation via EPR pairs or Bell-like states, quantum walks are more flexible and use less measurement resources. Quantum teleportation via long-step quantum walk is more secure than that via one-step quantum walk in previous related works. The scheme can apply to arbitrary finite dimensional quantum systems and can also be possible to realize in practice.","PeriodicalId":196955,"journal":{"name":"Proceedings of the 6th International Conference on High Performance Compilation, Computing and Communications","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Quantum Group Signature Based on Quantum Walk in d Dimensions\",\"authors\":\"Yunxiao Qian, Haoyang Yu\",\"doi\":\"10.1145/3546000.3546012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a group signature scheme based on quantum walk for quantum messages is proposed. Our scheme uses long step quantum walk-based teleportation and modified quantum one-time pad to authenticate the quantum messages respectively. In our scheme, the signer in a group signs the quantum messages by quantum walk-based teleportation and modified quantum one-time pad. The verifier can verify the signature via quantum walk-based teleportation while the group manager verifies the signature and identifies the signer via modified quantum one-time pad. The security analysis shows that the scheme can reach the properties of group signature. Compared to the teleportation via EPR pairs or Bell-like states, quantum walks are more flexible and use less measurement resources. Quantum teleportation via long-step quantum walk is more secure than that via one-step quantum walk in previous related works. The scheme can apply to arbitrary finite dimensional quantum systems and can also be possible to realize in practice.\",\"PeriodicalId\":196955,\"journal\":{\"name\":\"Proceedings of the 6th International Conference on High Performance Compilation, Computing and Communications\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 6th International Conference on High Performance Compilation, Computing and Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3546000.3546012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 6th International Conference on High Performance Compilation, Computing and Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3546000.3546012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Quantum Group Signature Based on Quantum Walk in d Dimensions
In this paper, a group signature scheme based on quantum walk for quantum messages is proposed. Our scheme uses long step quantum walk-based teleportation and modified quantum one-time pad to authenticate the quantum messages respectively. In our scheme, the signer in a group signs the quantum messages by quantum walk-based teleportation and modified quantum one-time pad. The verifier can verify the signature via quantum walk-based teleportation while the group manager verifies the signature and identifies the signer via modified quantum one-time pad. The security analysis shows that the scheme can reach the properties of group signature. Compared to the teleportation via EPR pairs or Bell-like states, quantum walks are more flexible and use less measurement resources. Quantum teleportation via long-step quantum walk is more secure than that via one-step quantum walk in previous related works. The scheme can apply to arbitrary finite dimensional quantum systems and can also be possible to realize in practice.