弱光图像的自适应暗区细节增强方法

Wengang Cheng, Caiyun Guo, Haitao Hu
{"title":"弱光图像的自适应暗区细节增强方法","authors":"Wengang Cheng, Caiyun Guo, Haitao Hu","doi":"10.1145/3338533.3366584","DOIUrl":null,"url":null,"abstract":"The images captured in low-light conditions are often of poor visual quality as most of details in dark regions buried. Although some advanced low-light image enhancement methods could lighten an image and its dark regions, they still cannot reveal the details in dark regions very well. This paper presents an adaptive dark region detail enhancement method for low-light images. As our method is based on the Retinex theory, we first formulate the Retinex-based low-light image enhancement problem into a Bayesian optimization framework. Then, a dark region prior is proposed and an adaptive gradient amplification strategy is designed to incorporate this prior into the illumination estimation. The dark region prior, together with the widely used spatial smooth and structure priors, leads to a dark region and structure-aware smoothness regularization term for illumination optimization. We provide a solver to this optimization and get final enhanced results after post processing. Experiments demonstrate that our method can obtain good enhancement results with better dark region details compared to several state-of-the-art methods.","PeriodicalId":273086,"journal":{"name":"Proceedings of the ACM Multimedia Asia","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Adaptive Dark Region Detail Enhancement Method for Low-light Images\",\"authors\":\"Wengang Cheng, Caiyun Guo, Haitao Hu\",\"doi\":\"10.1145/3338533.3366584\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The images captured in low-light conditions are often of poor visual quality as most of details in dark regions buried. Although some advanced low-light image enhancement methods could lighten an image and its dark regions, they still cannot reveal the details in dark regions very well. This paper presents an adaptive dark region detail enhancement method for low-light images. As our method is based on the Retinex theory, we first formulate the Retinex-based low-light image enhancement problem into a Bayesian optimization framework. Then, a dark region prior is proposed and an adaptive gradient amplification strategy is designed to incorporate this prior into the illumination estimation. The dark region prior, together with the widely used spatial smooth and structure priors, leads to a dark region and structure-aware smoothness regularization term for illumination optimization. We provide a solver to this optimization and get final enhanced results after post processing. Experiments demonstrate that our method can obtain good enhancement results with better dark region details compared to several state-of-the-art methods.\",\"PeriodicalId\":273086,\"journal\":{\"name\":\"Proceedings of the ACM Multimedia Asia\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ACM Multimedia Asia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3338533.3366584\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM Multimedia Asia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3338533.3366584","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在弱光条件下拍摄的图像通常视觉质量较差,因为大部分细节都隐藏在黑暗区域。虽然一些先进的弱光图像增强方法可以使图像及其暗区变亮,但它们仍然不能很好地显示暗区中的细节。提出了一种针对弱光图像的自适应暗区细节增强方法。由于我们的方法是基于Retinex理论,我们首先将基于Retinex的弱光图像增强问题转化为贝叶斯优化框架。然后,提出了一个暗区先验,并设计了一种自适应梯度放大策略,将该先验融合到照明估计中。暗区先验与广泛应用的空间平滑先验和结构先验共同构成了一个感知暗区和结构的平滑正则化项,用于照明优化。我们为这种优化提供了求解器,并在后期处理后得到最终的增强结果。实验表明,与现有的几种方法相比,该方法可以获得更好的暗区细节增强效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Adaptive Dark Region Detail Enhancement Method for Low-light Images
The images captured in low-light conditions are often of poor visual quality as most of details in dark regions buried. Although some advanced low-light image enhancement methods could lighten an image and its dark regions, they still cannot reveal the details in dark regions very well. This paper presents an adaptive dark region detail enhancement method for low-light images. As our method is based on the Retinex theory, we first formulate the Retinex-based low-light image enhancement problem into a Bayesian optimization framework. Then, a dark region prior is proposed and an adaptive gradient amplification strategy is designed to incorporate this prior into the illumination estimation. The dark region prior, together with the widely used spatial smooth and structure priors, leads to a dark region and structure-aware smoothness regularization term for illumination optimization. We provide a solver to this optimization and get final enhanced results after post processing. Experiments demonstrate that our method can obtain good enhancement results with better dark region details compared to several state-of-the-art methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信