R. Sherwood, Steve Ankuo Chien, D. Tran, A. Davies, R. Castaño, G. Rabideau, D. Mandl, J. Szwaczkowski, S. Frye, S. Shulman
{"title":"利用机载自主性加强科学和自动化操作","authors":"R. Sherwood, Steve Ankuo Chien, D. Tran, A. Davies, R. Castaño, G. Rabideau, D. Mandl, J. Szwaczkowski, S. Frye, S. Shulman","doi":"10.2514/6.2006-5709","DOIUrl":null,"url":null,"abstract":"Autonomy software, as part of the NASA New Millennium Space Technology 6 Project, is currently flying onboard the Earth Observing One (EO-1) Spacecraft. This software enables the spacecraft to autonomously detect, track, and respond to science events observed in instrument data. Included are onboard software systems that perform science data analysis, deliberative planning, and run-time robust execution. This software has demonstrated the potential for space missions to use onboard decision-making to detect, analyze, and respond to science events, and to downlink only the highest value science data. Using this science agent, the EO-1 mission has experienced over 100 times increase in science return measured as the number of science events captured per megabyte of downlink. As a result, significant portions of the mission planning & sequencing processes have been automated, reducing EO-1 operations cost by $1M/year. In this paper, we will describe the evolution of the software from prototype to full time operation onboard EO-1. We will quantify the increase in science, decrease in operations cost, and streamlining of operations procedures. Included will be a description of how this software was adapted post-launch to the EO-1 mission, which had very limited computing resources which constrained the autonomy flight software. We will discuss ongoing deployments of this software to the Mars Exploration Rovers and Mars Odyssey Missions as well as a discussion of lessons learned during this project. Finally, we will discuss how the onboard autonomy has been used in conjunction with other satellites and ground sensors to form an autonomous sensor-web to study volcanoes, floods, sea-ice topography, and wild fires. As demonstrated on EO-1, onboard autonomy is a revolutionary advance that will change the operations approach on future NASA missions. The importance of this software has been recognized by numerous awards including being a co-winner of the 2005 NASA Software of the Year Award.","PeriodicalId":230529,"journal":{"name":"SpaceOps 2006 Conference","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Enhancing Science and Automating Operations Using Onboard Autonomy\",\"authors\":\"R. Sherwood, Steve Ankuo Chien, D. Tran, A. Davies, R. Castaño, G. Rabideau, D. Mandl, J. Szwaczkowski, S. Frye, S. Shulman\",\"doi\":\"10.2514/6.2006-5709\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Autonomy software, as part of the NASA New Millennium Space Technology 6 Project, is currently flying onboard the Earth Observing One (EO-1) Spacecraft. This software enables the spacecraft to autonomously detect, track, and respond to science events observed in instrument data. Included are onboard software systems that perform science data analysis, deliberative planning, and run-time robust execution. This software has demonstrated the potential for space missions to use onboard decision-making to detect, analyze, and respond to science events, and to downlink only the highest value science data. Using this science agent, the EO-1 mission has experienced over 100 times increase in science return measured as the number of science events captured per megabyte of downlink. As a result, significant portions of the mission planning & sequencing processes have been automated, reducing EO-1 operations cost by $1M/year. In this paper, we will describe the evolution of the software from prototype to full time operation onboard EO-1. We will quantify the increase in science, decrease in operations cost, and streamlining of operations procedures. Included will be a description of how this software was adapted post-launch to the EO-1 mission, which had very limited computing resources which constrained the autonomy flight software. We will discuss ongoing deployments of this software to the Mars Exploration Rovers and Mars Odyssey Missions as well as a discussion of lessons learned during this project. Finally, we will discuss how the onboard autonomy has been used in conjunction with other satellites and ground sensors to form an autonomous sensor-web to study volcanoes, floods, sea-ice topography, and wild fires. As demonstrated on EO-1, onboard autonomy is a revolutionary advance that will change the operations approach on future NASA missions. The importance of this software has been recognized by numerous awards including being a co-winner of the 2005 NASA Software of the Year Award.\",\"PeriodicalId\":230529,\"journal\":{\"name\":\"SpaceOps 2006 Conference\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SpaceOps 2006 Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2514/6.2006-5709\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SpaceOps 2006 Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2514/6.2006-5709","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Enhancing Science and Automating Operations Using Onboard Autonomy
Autonomy software, as part of the NASA New Millennium Space Technology 6 Project, is currently flying onboard the Earth Observing One (EO-1) Spacecraft. This software enables the spacecraft to autonomously detect, track, and respond to science events observed in instrument data. Included are onboard software systems that perform science data analysis, deliberative planning, and run-time robust execution. This software has demonstrated the potential for space missions to use onboard decision-making to detect, analyze, and respond to science events, and to downlink only the highest value science data. Using this science agent, the EO-1 mission has experienced over 100 times increase in science return measured as the number of science events captured per megabyte of downlink. As a result, significant portions of the mission planning & sequencing processes have been automated, reducing EO-1 operations cost by $1M/year. In this paper, we will describe the evolution of the software from prototype to full time operation onboard EO-1. We will quantify the increase in science, decrease in operations cost, and streamlining of operations procedures. Included will be a description of how this software was adapted post-launch to the EO-1 mission, which had very limited computing resources which constrained the autonomy flight software. We will discuss ongoing deployments of this software to the Mars Exploration Rovers and Mars Odyssey Missions as well as a discussion of lessons learned during this project. Finally, we will discuss how the onboard autonomy has been used in conjunction with other satellites and ground sensors to form an autonomous sensor-web to study volcanoes, floods, sea-ice topography, and wild fires. As demonstrated on EO-1, onboard autonomy is a revolutionary advance that will change the operations approach on future NASA missions. The importance of this software has been recognized by numerous awards including being a co-winner of the 2005 NASA Software of the Year Award.