部分可观测环境下空间任务分配的近似方法

Sara Amini, M. Palhang, N. Mozayani
{"title":"部分可观测环境下空间任务分配的近似方法","authors":"Sara Amini, M. Palhang, N. Mozayani","doi":"10.1109/CSICC58665.2023.10105411","DOIUrl":null,"url":null,"abstract":"Multi-robot task allocation has many applications in the real world. Robots often have noisy or local sensor readings, making their workspace partially observable. This paper proposes a partially observable spatial task allocation algorithm, called POSA, that extends the subjective self-absorbed view of E-FWD, a task allocation algorithm for a fully observable environment. POSA uses Partially Observable Monte-Carlo Planning (POMCP) to evaluate the value of the successor belief states. Simulations show that POSA can reach the performance of E-FWD, even though it has partial observability rather than full observability. POSA also has a better convergence rate because it uses Monte-Carlo simulations that estimate the value of suitable locations of search space and does not have to evaluate the value of all parts of the search space.","PeriodicalId":127277,"journal":{"name":"2023 28th International Computer Conference, Computer Society of Iran (CSICC)","volume":"1738 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Approximate Method for Spatial Task Allocation in Partially Observable Environments\",\"authors\":\"Sara Amini, M. Palhang, N. Mozayani\",\"doi\":\"10.1109/CSICC58665.2023.10105411\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multi-robot task allocation has many applications in the real world. Robots often have noisy or local sensor readings, making their workspace partially observable. This paper proposes a partially observable spatial task allocation algorithm, called POSA, that extends the subjective self-absorbed view of E-FWD, a task allocation algorithm for a fully observable environment. POSA uses Partially Observable Monte-Carlo Planning (POMCP) to evaluate the value of the successor belief states. Simulations show that POSA can reach the performance of E-FWD, even though it has partial observability rather than full observability. POSA also has a better convergence rate because it uses Monte-Carlo simulations that estimate the value of suitable locations of search space and does not have to evaluate the value of all parts of the search space.\",\"PeriodicalId\":127277,\"journal\":{\"name\":\"2023 28th International Computer Conference, Computer Society of Iran (CSICC)\",\"volume\":\"1738 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 28th International Computer Conference, Computer Society of Iran (CSICC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSICC58665.2023.10105411\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 28th International Computer Conference, Computer Society of Iran (CSICC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSICC58665.2023.10105411","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

多机器人任务分配在现实世界中有着广泛的应用。机器人通常有噪声或局部传感器读数,使其工作空间部分可见。本文提出了一种部分可观察空间任务分配算法POSA,扩展了完全可观察环境下E-FWD任务分配算法的主观自吸收观点。POSA使用部分可观察蒙特卡洛规划(POMCP)来评估后继信念状态的值。仿真结果表明,尽管POSA具有部分可观测性而非完全可观测性,但仍能达到E-FWD的性能。POSA还具有更好的收敛速度,因为它使用蒙特卡罗模拟来估计搜索空间中合适位置的值,而不必评估搜索空间中所有部分的值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Approximate Method for Spatial Task Allocation in Partially Observable Environments
Multi-robot task allocation has many applications in the real world. Robots often have noisy or local sensor readings, making their workspace partially observable. This paper proposes a partially observable spatial task allocation algorithm, called POSA, that extends the subjective self-absorbed view of E-FWD, a task allocation algorithm for a fully observable environment. POSA uses Partially Observable Monte-Carlo Planning (POMCP) to evaluate the value of the successor belief states. Simulations show that POSA can reach the performance of E-FWD, even though it has partial observability rather than full observability. POSA also has a better convergence rate because it uses Monte-Carlo simulations that estimate the value of suitable locations of search space and does not have to evaluate the value of all parts of the search space.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信