一种基于逻辑映射的固定突触权值的脉冲神经网络

A. Sboev, Dmitriy Kunitsyn, A. Serenko, R. Rybka
{"title":"一种基于逻辑映射的固定突触权值的脉冲神经网络","authors":"A. Sboev, Dmitriy Kunitsyn, A. Serenko, R. Rybka","doi":"10.22323/1.429.0010","DOIUrl":null,"url":null,"abstract":"Spiking neural networks are increasingly popular for machine learning applications, thanks to ongoing progress in the hardware implementation of spiking networks in low-energy-consuming neuromorphic hardware. Still, obtaining a spiking neural network model that solves a classification task with the same level of accuracy as a artificial neural network remains a challenge. Of especial relevance is the development of spiking neural network models trained on base of local synaptic plasticity rules that can be implemented either in digital neuromorphic chips or in memristive devices. However, existing spiking networks with local learning all have, to our knowledge, one-layer topology, and no multi-layer ones have been proposed so far. As an initial step towards resolving this problem, we study the possibility of using a non-trainable layer of spiking neurons as an encoder layer within a prospective multi-layer spiking neural network, implying that the prospective subsequent layers could be trained on base of local plasticity. We study a spiking neural network model with non-trainable synaptic weights preset on base of logistic maps, similarly to what was proposed recently in the literature for formal neural networks. We show that one layer of spiking neurons with such weights can transform input vectors preserving the information about the classes of the input vectors, so that this information can be extracted from the neuron’s output spiking rates by","PeriodicalId":262901,"journal":{"name":"Proceedings of The 6th International Workshop on Deep Learning in Computational Physics — PoS(DLCP2022)","volume":"137 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A spiking neural network with fixed synaptic weights based on logistic maps for a classification task\",\"authors\":\"A. Sboev, Dmitriy Kunitsyn, A. Serenko, R. Rybka\",\"doi\":\"10.22323/1.429.0010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spiking neural networks are increasingly popular for machine learning applications, thanks to ongoing progress in the hardware implementation of spiking networks in low-energy-consuming neuromorphic hardware. Still, obtaining a spiking neural network model that solves a classification task with the same level of accuracy as a artificial neural network remains a challenge. Of especial relevance is the development of spiking neural network models trained on base of local synaptic plasticity rules that can be implemented either in digital neuromorphic chips or in memristive devices. However, existing spiking networks with local learning all have, to our knowledge, one-layer topology, and no multi-layer ones have been proposed so far. As an initial step towards resolving this problem, we study the possibility of using a non-trainable layer of spiking neurons as an encoder layer within a prospective multi-layer spiking neural network, implying that the prospective subsequent layers could be trained on base of local plasticity. We study a spiking neural network model with non-trainable synaptic weights preset on base of logistic maps, similarly to what was proposed recently in the literature for formal neural networks. We show that one layer of spiking neurons with such weights can transform input vectors preserving the information about the classes of the input vectors, so that this information can be extracted from the neuron’s output spiking rates by\",\"PeriodicalId\":262901,\"journal\":{\"name\":\"Proceedings of The 6th International Workshop on Deep Learning in Computational Physics — PoS(DLCP2022)\",\"volume\":\"137 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of The 6th International Workshop on Deep Learning in Computational Physics — PoS(DLCP2022)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22323/1.429.0010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of The 6th International Workshop on Deep Learning in Computational Physics — PoS(DLCP2022)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22323/1.429.0010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

脉冲神经网络在机器学习应用中越来越受欢迎,这要归功于低能耗神经形态硬件中脉冲网络的硬件实现的不断进步。尽管如此,获得一个与人工神经网络具有相同精度的峰值神经网络模型来解决分类任务仍然是一个挑战。特别重要的是基于局部突触可塑性规则训练的脉冲神经网络模型的发展,这种模型既可以在数字神经形态芯片中实现,也可以在记忆装置中实现。然而,据我们所知,现有的具有局部学习的尖峰网络都是单层拓扑,到目前为止还没有提出多层拓扑。作为解决这一问题的第一步,我们研究了在前瞻性多层刺突神经网络中使用不可训练的刺突神经元层作为编码器层的可能性,这意味着未来的后续层可以基于局部可塑性进行训练。我们研究了一个基于逻辑映射预设不可训练突触权重的尖峰神经网络模型,类似于最近在正式神经网络中提出的模型。我们证明了具有这种权重的一层尖峰神经元可以转换输入向量,并保留输入向量类别的信息,从而可以从神经元的输出尖峰率中提取这些信息
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A spiking neural network with fixed synaptic weights based on logistic maps for a classification task
Spiking neural networks are increasingly popular for machine learning applications, thanks to ongoing progress in the hardware implementation of spiking networks in low-energy-consuming neuromorphic hardware. Still, obtaining a spiking neural network model that solves a classification task with the same level of accuracy as a artificial neural network remains a challenge. Of especial relevance is the development of spiking neural network models trained on base of local synaptic plasticity rules that can be implemented either in digital neuromorphic chips or in memristive devices. However, existing spiking networks with local learning all have, to our knowledge, one-layer topology, and no multi-layer ones have been proposed so far. As an initial step towards resolving this problem, we study the possibility of using a non-trainable layer of spiking neurons as an encoder layer within a prospective multi-layer spiking neural network, implying that the prospective subsequent layers could be trained on base of local plasticity. We study a spiking neural network model with non-trainable synaptic weights preset on base of logistic maps, similarly to what was proposed recently in the literature for formal neural networks. We show that one layer of spiking neurons with such weights can transform input vectors preserving the information about the classes of the input vectors, so that this information can be extracted from the neuron’s output spiking rates by
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信