通过知识转移,利用多个远程卫星数据自动跟踪气旋

S. Ho, A. Talukder
{"title":"通过知识转移,利用多个远程卫星数据自动跟踪气旋","authors":"S. Ho, A. Talukder","doi":"10.1109/AERO.2009.4839579","DOIUrl":null,"url":null,"abstract":"Cyclone tracking using a single orbiting satellite in a continuous manner is impractical as it has limited spatial and temporal coverage. One solution is to use multiple orbiting satellites for cyclone tracking. However, data from some orbiting satellites do not provide features as useful as other satellites in identifying cyclones. Moreover, satellite data containing strong cyclone discriminating features may be affected by coarse temporal resolution and object occlusion. In this paper, we propose a knowledge transfer methodology based on a Kalman filter for cyclone tracking using multiple satellite data sources containing a mixture of strong and weak features. This approach minimizes the negative effect of coarse temporal resolution and occlusion if only the satellite data containing strong cyclone discriminating features were used. Experimental results are presented to demonstrate the feasibility and usefulness of our knowledge transfer approach for cyclone tracking.","PeriodicalId":117250,"journal":{"name":"2009 IEEE Aerospace conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Automated cyclone tracking using multiple remote satellite data via knowledge transfer\",\"authors\":\"S. Ho, A. Talukder\",\"doi\":\"10.1109/AERO.2009.4839579\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cyclone tracking using a single orbiting satellite in a continuous manner is impractical as it has limited spatial and temporal coverage. One solution is to use multiple orbiting satellites for cyclone tracking. However, data from some orbiting satellites do not provide features as useful as other satellites in identifying cyclones. Moreover, satellite data containing strong cyclone discriminating features may be affected by coarse temporal resolution and object occlusion. In this paper, we propose a knowledge transfer methodology based on a Kalman filter for cyclone tracking using multiple satellite data sources containing a mixture of strong and weak features. This approach minimizes the negative effect of coarse temporal resolution and occlusion if only the satellite data containing strong cyclone discriminating features were used. Experimental results are presented to demonstrate the feasibility and usefulness of our knowledge transfer approach for cyclone tracking.\",\"PeriodicalId\":117250,\"journal\":{\"name\":\"2009 IEEE Aerospace conference\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE Aerospace conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AERO.2009.4839579\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Aerospace conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AERO.2009.4839579","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

使用单一轨道卫星连续跟踪气旋是不切实际的,因为它的空间和时间覆盖范围有限。一种解决方案是使用多轨道卫星跟踪气旋。然而,一些轨道卫星的数据在识别气旋方面不像其他卫星那样提供有用的特征。此外,含有强气旋识别特征的卫星数据可能受到粗时间分辨率和目标遮挡的影响。在本文中,我们提出了一种基于卡尔曼滤波的知识转移方法,用于使用包含强弱混合特征的多个卫星数据源进行气旋跟踪。如果只使用包含强气旋识别特征的卫星数据,这种方法可以最大限度地减少粗时间分辨率和遮挡的负面影响。实验结果证明了我们的知识转移方法在气旋跟踪中的可行性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automated cyclone tracking using multiple remote satellite data via knowledge transfer
Cyclone tracking using a single orbiting satellite in a continuous manner is impractical as it has limited spatial and temporal coverage. One solution is to use multiple orbiting satellites for cyclone tracking. However, data from some orbiting satellites do not provide features as useful as other satellites in identifying cyclones. Moreover, satellite data containing strong cyclone discriminating features may be affected by coarse temporal resolution and object occlusion. In this paper, we propose a knowledge transfer methodology based on a Kalman filter for cyclone tracking using multiple satellite data sources containing a mixture of strong and weak features. This approach minimizes the negative effect of coarse temporal resolution and occlusion if only the satellite data containing strong cyclone discriminating features were used. Experimental results are presented to demonstrate the feasibility and usefulness of our knowledge transfer approach for cyclone tracking.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信