Xiaoxing Ma, L. Baresi, C. Ghezzi, V. Manna, Jian Lu
{"title":"基于组件的分布式系统的版本一致动态重配置","authors":"Xiaoxing Ma, L. Baresi, C. Ghezzi, V. Manna, Jian Lu","doi":"10.1145/2025113.2025148","DOIUrl":null,"url":null,"abstract":"There is an increasing demand for the runtime reconfiguration of distributed systems in response to changing environments and evolving requirements. Reconfiguration must be done in a safe and low-disruptive way. In this paper, we propose version consistency of distributed transactions as a safe criterion for dynamic reconfiguration. Version consistency ensures that distributed transactions be served as if there were operating on a single coherent version of the system despite possible reconfigurations that may happen meanwhile. The paper also proposes a distributed algorithm to maintain dynamic dependences between components at architectural level and enable low-disruptive version-consistent dynamic reconfigurations. An initial assessment through simulation shows the benefits of the proposed approach with respect to timeliness and low degree of disruption.","PeriodicalId":184518,"journal":{"name":"ESEC/FSE '11","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"63","resultStr":"{\"title\":\"Version-consistent dynamic reconfiguration of component-based distributed systems\",\"authors\":\"Xiaoxing Ma, L. Baresi, C. Ghezzi, V. Manna, Jian Lu\",\"doi\":\"10.1145/2025113.2025148\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There is an increasing demand for the runtime reconfiguration of distributed systems in response to changing environments and evolving requirements. Reconfiguration must be done in a safe and low-disruptive way. In this paper, we propose version consistency of distributed transactions as a safe criterion for dynamic reconfiguration. Version consistency ensures that distributed transactions be served as if there were operating on a single coherent version of the system despite possible reconfigurations that may happen meanwhile. The paper also proposes a distributed algorithm to maintain dynamic dependences between components at architectural level and enable low-disruptive version-consistent dynamic reconfigurations. An initial assessment through simulation shows the benefits of the proposed approach with respect to timeliness and low degree of disruption.\",\"PeriodicalId\":184518,\"journal\":{\"name\":\"ESEC/FSE '11\",\"volume\":\"76 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"63\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ESEC/FSE '11\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2025113.2025148\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ESEC/FSE '11","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2025113.2025148","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Version-consistent dynamic reconfiguration of component-based distributed systems
There is an increasing demand for the runtime reconfiguration of distributed systems in response to changing environments and evolving requirements. Reconfiguration must be done in a safe and low-disruptive way. In this paper, we propose version consistency of distributed transactions as a safe criterion for dynamic reconfiguration. Version consistency ensures that distributed transactions be served as if there were operating on a single coherent version of the system despite possible reconfigurations that may happen meanwhile. The paper also proposes a distributed algorithm to maintain dynamic dependences between components at architectural level and enable low-disruptive version-consistent dynamic reconfigurations. An initial assessment through simulation shows the benefits of the proposed approach with respect to timeliness and low degree of disruption.