Apache Pig, Apache Hive和MySQL集群上的处理性能

Ammar Fuad, Alva Erwin, Heru Purnomo Ipung
{"title":"Apache Pig, Apache Hive和MySQL集群上的处理性能","authors":"Ammar Fuad, Alva Erwin, Heru Purnomo Ipung","doi":"10.1109/ICTS.2014.7010600","DOIUrl":null,"url":null,"abstract":"MySQL Cluster is a famous clustered database that is used to store and manipulate data. The problem with MySQL Cluster is that as the data grows larger, the time required to process the data increases and additional resources may be needed. With Hadoop and Hive and Pig, processing time can be faster than MySQL Cluster. In this paper, three data testers with the same data model will run simple queries and to find out at how many rows Hive or Pig is faster than MySQL Cluster. The data model taken from GroupLens Research Project [12] showed a result that Hive is the most appropriate for this data model in a low-cost hardware environment.","PeriodicalId":325095,"journal":{"name":"Proceedings of International Conference on Information, Communication Technology and System (ICTS) 2014","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":"{\"title\":\"Processing performance on Apache Pig, Apache Hive and MySQL cluster\",\"authors\":\"Ammar Fuad, Alva Erwin, Heru Purnomo Ipung\",\"doi\":\"10.1109/ICTS.2014.7010600\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"MySQL Cluster is a famous clustered database that is used to store and manipulate data. The problem with MySQL Cluster is that as the data grows larger, the time required to process the data increases and additional resources may be needed. With Hadoop and Hive and Pig, processing time can be faster than MySQL Cluster. In this paper, three data testers with the same data model will run simple queries and to find out at how many rows Hive or Pig is faster than MySQL Cluster. The data model taken from GroupLens Research Project [12] showed a result that Hive is the most appropriate for this data model in a low-cost hardware environment.\",\"PeriodicalId\":325095,\"journal\":{\"name\":\"Proceedings of International Conference on Information, Communication Technology and System (ICTS) 2014\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"33\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of International Conference on Information, Communication Technology and System (ICTS) 2014\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICTS.2014.7010600\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of International Conference on Information, Communication Technology and System (ICTS) 2014","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTS.2014.7010600","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33

摘要

MySQL集群是一个著名的集群数据库,用于存储和操作数据。MySQL集群的问题是,随着数据的增长,处理数据所需的时间增加,可能需要额外的资源。使用Hadoop、Hive和Pig,处理时间可以比MySQL集群快。在本文中,使用相同数据模型的三个数据测试人员将运行简单的查询,并找出Hive或Pig比MySQL集群快多少行。GroupLens Research Project[12]的数据模型表明,在低成本的硬件环境下,Hive是最适合该数据模型的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Processing performance on Apache Pig, Apache Hive and MySQL cluster
MySQL Cluster is a famous clustered database that is used to store and manipulate data. The problem with MySQL Cluster is that as the data grows larger, the time required to process the data increases and additional resources may be needed. With Hadoop and Hive and Pig, processing time can be faster than MySQL Cluster. In this paper, three data testers with the same data model will run simple queries and to find out at how many rows Hive or Pig is faster than MySQL Cluster. The data model taken from GroupLens Research Project [12] showed a result that Hive is the most appropriate for this data model in a low-cost hardware environment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信