将显式模型预测控制导出到python

B. Takács, Juraj Holaza, Juraj Števek, M. Kvasnica
{"title":"将显式模型预测控制导出到python","authors":"B. Takács, Juraj Holaza, Juraj Števek, M. Kvasnica","doi":"10.1109/PC.2015.7169942","DOIUrl":null,"url":null,"abstract":"This paper shows how explicit model predictive control (MPC) strategies can be implemented in Python. They use a pre-calculated map between state measurements and control inputs to simplify and accelerate the calculation of optimal control inputs. By shifting majority of the computational effort off-line, the concept of explicit MPC offers a significantly faster and cheaper implementation of model predictive control. We show how explicit MPC feedbacks are designed and exported to a self-contained Python code that can be easily merged with existing applications. Two examples are provided to illustrate the procedure. One considers the design of an artificial player for a videogame. The second one tackles the problem of quadrocopter control.","PeriodicalId":173529,"journal":{"name":"2015 20th International Conference on Process Control (PC)","volume":"197 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Export of explicit model predictive control to python\",\"authors\":\"B. Takács, Juraj Holaza, Juraj Števek, M. Kvasnica\",\"doi\":\"10.1109/PC.2015.7169942\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper shows how explicit model predictive control (MPC) strategies can be implemented in Python. They use a pre-calculated map between state measurements and control inputs to simplify and accelerate the calculation of optimal control inputs. By shifting majority of the computational effort off-line, the concept of explicit MPC offers a significantly faster and cheaper implementation of model predictive control. We show how explicit MPC feedbacks are designed and exported to a self-contained Python code that can be easily merged with existing applications. Two examples are provided to illustrate the procedure. One considers the design of an artificial player for a videogame. The second one tackles the problem of quadrocopter control.\",\"PeriodicalId\":173529,\"journal\":{\"name\":\"2015 20th International Conference on Process Control (PC)\",\"volume\":\"197 2\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 20th International Conference on Process Control (PC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PC.2015.7169942\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 20th International Conference on Process Control (PC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PC.2015.7169942","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

本文展示了如何在Python中实现显式模型预测控制(MPC)策略。他们使用预先计算的状态测量和控制输入之间的映射来简化和加速最优控制输入的计算。通过将大部分计算工作转移到离线,显式MPC的概念提供了一个更快、更便宜的模型预测控制实现。我们将展示如何设计显式MPC反馈并将其导出到可以轻松地与现有应用程序合并的自包含Python代码。提供了两个示例来说明该过程。一种是考虑电子游戏的人工玩家设计。第二个解决了四旋翼飞行器控制的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Export of explicit model predictive control to python
This paper shows how explicit model predictive control (MPC) strategies can be implemented in Python. They use a pre-calculated map between state measurements and control inputs to simplify and accelerate the calculation of optimal control inputs. By shifting majority of the computational effort off-line, the concept of explicit MPC offers a significantly faster and cheaper implementation of model predictive control. We show how explicit MPC feedbacks are designed and exported to a self-contained Python code that can be easily merged with existing applications. Two examples are provided to illustrate the procedure. One considers the design of an artificial player for a videogame. The second one tackles the problem of quadrocopter control.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信