用于回归和预测的长度尺度的缩放

T. Aida
{"title":"用于回归和预测的长度尺度的缩放","authors":"T. Aida","doi":"10.1109/NNSP.2002.1030029","DOIUrl":null,"url":null,"abstract":"We analyze the prediction from noised data, based on a regression formulation of the problem. For the regression, we construct a model with a length scale to smooth the data, which is determined by the variance of noise and the speed of the variation of original signals. The model is found to be effective also for prediction. This is because it decreases an uncertain region near a boundary as the speed of the variation of original signals increases, which is a crucial property for accurate prediction.","PeriodicalId":117945,"journal":{"name":"Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing","volume":"312 6","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scaling of a length scale for regression and prediction\",\"authors\":\"T. Aida\",\"doi\":\"10.1109/NNSP.2002.1030029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We analyze the prediction from noised data, based on a regression formulation of the problem. For the regression, we construct a model with a length scale to smooth the data, which is determined by the variance of noise and the speed of the variation of original signals. The model is found to be effective also for prediction. This is because it decreases an uncertain region near a boundary as the speed of the variation of original signals increases, which is a crucial property for accurate prediction.\",\"PeriodicalId\":117945,\"journal\":{\"name\":\"Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing\",\"volume\":\"312 6\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NNSP.2002.1030029\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NNSP.2002.1030029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于问题的回归公式,我们分析了噪声数据的预测。对于回归,我们构建了一个长度尺度的模型来平滑数据,这是由噪声的方差和原始信号的变化速度决定的。该模型对预测也很有效。这是因为它随着原始信号变化速度的增加而减小边界附近的不确定区域,这是准确预测的关键性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Scaling of a length scale for regression and prediction
We analyze the prediction from noised data, based on a regression formulation of the problem. For the regression, we construct a model with a length scale to smooth the data, which is determined by the variance of noise and the speed of the variation of original signals. The model is found to be effective also for prediction. This is because it decreases an uncertain region near a boundary as the speed of the variation of original signals increases, which is a crucial property for accurate prediction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信