使用NLP变压器对安全需求进行分组

V. Varenov, Aydar Gabdrahmanov
{"title":"使用NLP变压器对安全需求进行分组","authors":"V. Varenov, Aydar Gabdrahmanov","doi":"10.1109/REW53955.2021.9714713","DOIUrl":null,"url":null,"abstract":"This study presents an implementation of sentencelevel classification of security requirements into predefined groups. The method of this paper suggests using three models: BERT, XLNET, and DistilBERT for classification task and figures out evaluation metrics such as precision, recall, and F1-score. We compiled a new dataset of 1086 security requirements of 7 classes collected from multiple existing datasets, such as PURE, SecReq and Riaz's dataset. The best-achieved result is DistilBERT’s 78% F1-score on the multiclass classification task. The main contribution of this study is the new multiclass dataset of security requirements and an example of how a deep transformer model can be used for requirements elicitation, which can be used as a basis for further improvement.","PeriodicalId":393646,"journal":{"name":"2021 IEEE 29th International Requirements Engineering Conference Workshops (REW)","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Security Requirements Classification into Groups Using NLP Transformers\",\"authors\":\"V. Varenov, Aydar Gabdrahmanov\",\"doi\":\"10.1109/REW53955.2021.9714713\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study presents an implementation of sentencelevel classification of security requirements into predefined groups. The method of this paper suggests using three models: BERT, XLNET, and DistilBERT for classification task and figures out evaluation metrics such as precision, recall, and F1-score. We compiled a new dataset of 1086 security requirements of 7 classes collected from multiple existing datasets, such as PURE, SecReq and Riaz's dataset. The best-achieved result is DistilBERT’s 78% F1-score on the multiclass classification task. The main contribution of this study is the new multiclass dataset of security requirements and an example of how a deep transformer model can be used for requirements elicitation, which can be used as a basis for further improvement.\",\"PeriodicalId\":393646,\"journal\":{\"name\":\"2021 IEEE 29th International Requirements Engineering Conference Workshops (REW)\",\"volume\":\"75 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 29th International Requirements Engineering Conference Workshops (REW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/REW53955.2021.9714713\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 29th International Requirements Engineering Conference Workshops (REW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/REW53955.2021.9714713","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本研究提出了一种将句子级别的安全需求分类为预定义组的实现方法。本文的方法建议使用BERT、XLNET和DistilBERT三种模型进行分类任务,并计算出准确率、召回率和F1-score等评价指标。我们编译了一个新的数据集,收集了来自多个现有数据集(如PURE, SecReq和Riaz的数据集)的7个类的1086个安全需求。最好的结果是蒸馏器在多类分类任务中获得了78%的f1分。本研究的主要贡献是新的多类安全需求数据集,以及如何使用深层变压器模型进行需求提取的示例,这可以作为进一步改进的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Security Requirements Classification into Groups Using NLP Transformers
This study presents an implementation of sentencelevel classification of security requirements into predefined groups. The method of this paper suggests using three models: BERT, XLNET, and DistilBERT for classification task and figures out evaluation metrics such as precision, recall, and F1-score. We compiled a new dataset of 1086 security requirements of 7 classes collected from multiple existing datasets, such as PURE, SecReq and Riaz's dataset. The best-achieved result is DistilBERT’s 78% F1-score on the multiclass classification task. The main contribution of this study is the new multiclass dataset of security requirements and an example of how a deep transformer model can be used for requirements elicitation, which can be used as a basis for further improvement.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信