{"title":"基于宽禁带半导体的电动汽车高性能双向谐振变换器","authors":"Md. Tanvir Shahed, A. Rashid","doi":"10.1109/icaeee54957.2022.9836379","DOIUrl":null,"url":null,"abstract":"In this paper, a bidirectional capacitor-inductor-inductor-inductor-capacitor (CLLLC) resonant converter based on a wide bandgap (WBG) transistor is designed and analyzed at MHz-level switching frequency to accomplish high power density and high efficiency. A discrete-time Proportional-Integral-Derivative (PID) controller based on phase shifted pulse width modulation (PWM) technique has been developed for the closed-loop control of the aforementioned CLLLC converter. The converter is designed with WBG switching devices to accomplish fast switching with minimal switching losses, and it is also compared to Si-based switching devices. For the proper thermal design of the converter, a precise power loss model of the switching devices has been developed. A 5 kW CLLLC converter with 400-450V DC input and 250-465V DC output with an operating frequency of 1 MHz has been designed and simulated under a variety of loading conditions. The maximum conversion efficiency achieved with Gallium Nitride (GaN)-based devices was 97.2 percent in forward mode and 97 percent in reverse mode.","PeriodicalId":383872,"journal":{"name":"2022 International Conference on Advancement in Electrical and Electronic Engineering (ICAEEE)","volume":"207 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Wide Bandgap Semiconductor Based High Performance Bidirectional Resonant Converter for Electric Vehicle Application\",\"authors\":\"Md. Tanvir Shahed, A. Rashid\",\"doi\":\"10.1109/icaeee54957.2022.9836379\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a bidirectional capacitor-inductor-inductor-inductor-capacitor (CLLLC) resonant converter based on a wide bandgap (WBG) transistor is designed and analyzed at MHz-level switching frequency to accomplish high power density and high efficiency. A discrete-time Proportional-Integral-Derivative (PID) controller based on phase shifted pulse width modulation (PWM) technique has been developed for the closed-loop control of the aforementioned CLLLC converter. The converter is designed with WBG switching devices to accomplish fast switching with minimal switching losses, and it is also compared to Si-based switching devices. For the proper thermal design of the converter, a precise power loss model of the switching devices has been developed. A 5 kW CLLLC converter with 400-450V DC input and 250-465V DC output with an operating frequency of 1 MHz has been designed and simulated under a variety of loading conditions. The maximum conversion efficiency achieved with Gallium Nitride (GaN)-based devices was 97.2 percent in forward mode and 97 percent in reverse mode.\",\"PeriodicalId\":383872,\"journal\":{\"name\":\"2022 International Conference on Advancement in Electrical and Electronic Engineering (ICAEEE)\",\"volume\":\"207 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Advancement in Electrical and Electronic Engineering (ICAEEE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/icaeee54957.2022.9836379\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Advancement in Electrical and Electronic Engineering (ICAEEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icaeee54957.2022.9836379","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Wide Bandgap Semiconductor Based High Performance Bidirectional Resonant Converter for Electric Vehicle Application
In this paper, a bidirectional capacitor-inductor-inductor-inductor-capacitor (CLLLC) resonant converter based on a wide bandgap (WBG) transistor is designed and analyzed at MHz-level switching frequency to accomplish high power density and high efficiency. A discrete-time Proportional-Integral-Derivative (PID) controller based on phase shifted pulse width modulation (PWM) technique has been developed for the closed-loop control of the aforementioned CLLLC converter. The converter is designed with WBG switching devices to accomplish fast switching with minimal switching losses, and it is also compared to Si-based switching devices. For the proper thermal design of the converter, a precise power loss model of the switching devices has been developed. A 5 kW CLLLC converter with 400-450V DC input and 250-465V DC output with an operating frequency of 1 MHz has been designed and simulated under a variety of loading conditions. The maximum conversion efficiency achieved with Gallium Nitride (GaN)-based devices was 97.2 percent in forward mode and 97 percent in reverse mode.