基于多项式主成分分析的非线性降维

A. Kazemipour, S. Druckmann
{"title":"基于多项式主成分分析的非线性降维","authors":"A. Kazemipour, S. Druckmann","doi":"10.1109/GlobalSIP.2018.8646515","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce Poly-PCA, a nonlinear dimensionality reduction technique which can capture arbitrary nonlinearities in high-dimensional and dynamic data. Instead of optimizing over the space of nonlinear functions of high-dimensional data Poly-PCA models the data as nonlinear functions in the latent variables, leading to relatively fast optimization. Poly-PCA can handle nonlinearities which do not preserve the topology and geometry of the latents. Applying Poly-PCA to a nonlinear dynamical system successfully recovered the phase-space of the latent variables.","PeriodicalId":119131,"journal":{"name":"2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonlinear Dimensionality Reduction Via Polynomial Principal Component Analysis\",\"authors\":\"A. Kazemipour, S. Druckmann\",\"doi\":\"10.1109/GlobalSIP.2018.8646515\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we introduce Poly-PCA, a nonlinear dimensionality reduction technique which can capture arbitrary nonlinearities in high-dimensional and dynamic data. Instead of optimizing over the space of nonlinear functions of high-dimensional data Poly-PCA models the data as nonlinear functions in the latent variables, leading to relatively fast optimization. Poly-PCA can handle nonlinearities which do not preserve the topology and geometry of the latents. Applying Poly-PCA to a nonlinear dynamical system successfully recovered the phase-space of the latent variables.\",\"PeriodicalId\":119131,\"journal\":{\"name\":\"2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP)\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GlobalSIP.2018.8646515\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GlobalSIP.2018.8646515","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种非线性降维技术Poly-PCA,它可以捕获高维动态数据中的任意非线性。Poly-PCA不是在高维数据的非线性函数空间上进行优化,而是将数据作为潜在变量中的非线性函数建模,从而实现相对快速的优化。Poly-PCA可以处理不保留电位拓扑和几何形状的非线性。将多元主成分分析应用于非线性动力系统,成功地恢复了潜在变量的相空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonlinear Dimensionality Reduction Via Polynomial Principal Component Analysis
In this paper, we introduce Poly-PCA, a nonlinear dimensionality reduction technique which can capture arbitrary nonlinearities in high-dimensional and dynamic data. Instead of optimizing over the space of nonlinear functions of high-dimensional data Poly-PCA models the data as nonlinear functions in the latent variables, leading to relatively fast optimization. Poly-PCA can handle nonlinearities which do not preserve the topology and geometry of the latents. Applying Poly-PCA to a nonlinear dynamical system successfully recovered the phase-space of the latent variables.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信