基于约束的可重构多机器人系统任务规划方法

T. Roehr
{"title":"基于约束的可重构多机器人系统任务规划方法","authors":"T. Roehr","doi":"10.4114/INTARTIF.VOL21ISS62PP25-39","DOIUrl":null,"url":null,"abstract":"The application of reconfigurable multi-robot systems introduces additional degrees of freedom to design robotic missions compared to classical multi-robot systems. To allow for autonomous operation of such systems, planning approaches have to be investigated that cannot only cope with the combinatorial challenge arising from the increased flexibility of modular systems, but also exploit this flexibility to improve for example the safety of operation. While the problem originates from the domain of robotics it is of general nature and significantly intersects with operations research. This paper suggests a constraint-based mission planning approach, and presents a set of revised definitions for reconfigurable multi-robot systems including the representation of the planning problem using spatially and temporally qualified resource constraints. Planning is performed using a multi-stage approach and a combined use of knowledge-based reasoning, constraint-based programming and integer linear programming. The paper concludes with the illustration of the solution of a planned example mission.","PeriodicalId":176050,"journal":{"name":"Inteligencia Artif.","volume":"1020 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Constraint-based Mission Planning Approach for Reconfigurable Multi-Robot Systems\",\"authors\":\"T. Roehr\",\"doi\":\"10.4114/INTARTIF.VOL21ISS62PP25-39\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The application of reconfigurable multi-robot systems introduces additional degrees of freedom to design robotic missions compared to classical multi-robot systems. To allow for autonomous operation of such systems, planning approaches have to be investigated that cannot only cope with the combinatorial challenge arising from the increased flexibility of modular systems, but also exploit this flexibility to improve for example the safety of operation. While the problem originates from the domain of robotics it is of general nature and significantly intersects with operations research. This paper suggests a constraint-based mission planning approach, and presents a set of revised definitions for reconfigurable multi-robot systems including the representation of the planning problem using spatially and temporally qualified resource constraints. Planning is performed using a multi-stage approach and a combined use of knowledge-based reasoning, constraint-based programming and integer linear programming. The paper concludes with the illustration of the solution of a planned example mission.\",\"PeriodicalId\":176050,\"journal\":{\"name\":\"Inteligencia Artif.\",\"volume\":\"1020 2\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inteligencia Artif.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4114/INTARTIF.VOL21ISS62PP25-39\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inteligencia Artif.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4114/INTARTIF.VOL21ISS62PP25-39","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

与传统的多机器人系统相比,可重构多机器人系统的应用为机器人任务设计提供了额外的自由度。为了允许此类系统的自主操作,必须研究规划方法,不仅要应对模块化系统灵活性增加带来的组合挑战,还要利用这种灵活性来提高操作安全性等。虽然这个问题起源于机器人领域,但它具有普遍性,并且与运筹学有重要的交叉。提出了一种基于约束的任务规划方法,并提出了一套可重构多机器人系统的修正定义,包括使用空间和时间限定的资源约束来表示规划问题。规划是使用多阶段方法和基于知识的推理、基于约束的规划和整数线性规划的组合使用来执行的。最后给出了一个规划样例任务的解法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Constraint-based Mission Planning Approach for Reconfigurable Multi-Robot Systems
The application of reconfigurable multi-robot systems introduces additional degrees of freedom to design robotic missions compared to classical multi-robot systems. To allow for autonomous operation of such systems, planning approaches have to be investigated that cannot only cope with the combinatorial challenge arising from the increased flexibility of modular systems, but also exploit this flexibility to improve for example the safety of operation. While the problem originates from the domain of robotics it is of general nature and significantly intersects with operations research. This paper suggests a constraint-based mission planning approach, and presents a set of revised definitions for reconfigurable multi-robot systems including the representation of the planning problem using spatially and temporally qualified resource constraints. Planning is performed using a multi-stage approach and a combined use of knowledge-based reasoning, constraint-based programming and integer linear programming. The paper concludes with the illustration of the solution of a planned example mission.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信