图嵌入及其在缺陷检测系统中的应用

Qifeng Huang, A. Zheng, Xuesong Shao, Xiaoquan Lu, Meimei Duan
{"title":"图嵌入及其在缺陷检测系统中的应用","authors":"Qifeng Huang, A. Zheng, Xuesong Shao, Xiaoquan Lu, Meimei Duan","doi":"10.1109/SPAC.2017.8304363","DOIUrl":null,"url":null,"abstract":"Recent years, auto meter reading system performance has been the focus of research. In this paper, we apply graph analysis method to embedding the node in the power system to detect the defect in auto meter reading system. We use decision tree algorithm to determine the problematic nodes. We tried five kinds of graph embedding methods to experiment. We find that these methods have improved the accuracy of fault diagnosis to a certain extend.","PeriodicalId":161647,"journal":{"name":"2017 International Conference on Security, Pattern Analysis, and Cybernetics (SPAC)","volume":"778 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Graph embedding and its application in defect detection system\",\"authors\":\"Qifeng Huang, A. Zheng, Xuesong Shao, Xiaoquan Lu, Meimei Duan\",\"doi\":\"10.1109/SPAC.2017.8304363\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent years, auto meter reading system performance has been the focus of research. In this paper, we apply graph analysis method to embedding the node in the power system to detect the defect in auto meter reading system. We use decision tree algorithm to determine the problematic nodes. We tried five kinds of graph embedding methods to experiment. We find that these methods have improved the accuracy of fault diagnosis to a certain extend.\",\"PeriodicalId\":161647,\"journal\":{\"name\":\"2017 International Conference on Security, Pattern Analysis, and Cybernetics (SPAC)\",\"volume\":\"778 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Security, Pattern Analysis, and Cybernetics (SPAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPAC.2017.8304363\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Security, Pattern Analysis, and Cybernetics (SPAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPAC.2017.8304363","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近年来,自动抄表系统的性能一直是研究的热点。本文采用图分析方法在电力系统中嵌入节点,以检测自动抄表系统的缺陷。我们使用决策树算法来确定问题节点。我们尝试了五种图嵌入方法进行实验。我们发现这些方法在一定程度上提高了故障诊断的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Graph embedding and its application in defect detection system
Recent years, auto meter reading system performance has been the focus of research. In this paper, we apply graph analysis method to embedding the node in the power system to detect the defect in auto meter reading system. We use decision tree algorithm to determine the problematic nodes. We tried five kinds of graph embedding methods to experiment. We find that these methods have improved the accuracy of fault diagnosis to a certain extend.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信