{"title":"神经网络时间序列预测的数据驱动拟合样本选择","authors":"N. Kourentzes","doi":"10.1109/IJCNN.2012.6252528","DOIUrl":null,"url":null,"abstract":"In this paper we propose a data driven method to select the fitting sample of neural networks for time series forecasting. In spite of the fundamental importance of sample selection for model building there has been limited research in the forecasting literature, mostly concluding in vague recommendations on how much time series history should be used and stored. This research addresses this issue in a data driven framework. The proposed method allows the neural networks to iteratively adjust the fitting sample, penalizing the time series history for age and inconsistent behavior. The resulting selected sample helps the networks to produce accurate out-of-sample forecasts, focusing on the recent history of the time series. The performance of the method is demonstrated using time series from different domains, exhibiting substantial improvements in accuracy.","PeriodicalId":287844,"journal":{"name":"The 2012 International Joint Conference on Neural Networks (IJCNN)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Data driven fitting sample selection for time series forecasting with neural networks\",\"authors\":\"N. Kourentzes\",\"doi\":\"10.1109/IJCNN.2012.6252528\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we propose a data driven method to select the fitting sample of neural networks for time series forecasting. In spite of the fundamental importance of sample selection for model building there has been limited research in the forecasting literature, mostly concluding in vague recommendations on how much time series history should be used and stored. This research addresses this issue in a data driven framework. The proposed method allows the neural networks to iteratively adjust the fitting sample, penalizing the time series history for age and inconsistent behavior. The resulting selected sample helps the networks to produce accurate out-of-sample forecasts, focusing on the recent history of the time series. The performance of the method is demonstrated using time series from different domains, exhibiting substantial improvements in accuracy.\",\"PeriodicalId\":287844,\"journal\":{\"name\":\"The 2012 International Joint Conference on Neural Networks (IJCNN)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 2012 International Joint Conference on Neural Networks (IJCNN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.2012.6252528\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 2012 International Joint Conference on Neural Networks (IJCNN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2012.6252528","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Data driven fitting sample selection for time series forecasting with neural networks
In this paper we propose a data driven method to select the fitting sample of neural networks for time series forecasting. In spite of the fundamental importance of sample selection for model building there has been limited research in the forecasting literature, mostly concluding in vague recommendations on how much time series history should be used and stored. This research addresses this issue in a data driven framework. The proposed method allows the neural networks to iteratively adjust the fitting sample, penalizing the time series history for age and inconsistent behavior. The resulting selected sample helps the networks to produce accurate out-of-sample forecasts, focusing on the recent history of the time series. The performance of the method is demonstrated using time series from different domains, exhibiting substantial improvements in accuracy.