{"title":"del Pezzo曲面上有哪些有理双点","authors":"Claudia Stadlmayr","doi":"10.46298/epiga.2021.7041","DOIUrl":null,"url":null,"abstract":"We determine all configurations of rational double points that occur on RDP del Pezzo surfaces of arbitrary degree and Picard rank over an algebraically closed field $k$ of arbitrary characteristic ${\\rm char}(k)=p \\geq 0$, generalizing classical work of Du Val to positive characteristic. Moreover, we give simplified equations for all RDP del Pezzo surfaces of degree $1$ containing non-taut rational double points.","PeriodicalId":278201,"journal":{"name":"arXiv: Algebraic Geometry","volume":"200 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Which rational double points occur on del Pezzo surfaces\",\"authors\":\"Claudia Stadlmayr\",\"doi\":\"10.46298/epiga.2021.7041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We determine all configurations of rational double points that occur on RDP del Pezzo surfaces of arbitrary degree and Picard rank over an algebraically closed field $k$ of arbitrary characteristic ${\\\\rm char}(k)=p \\\\geq 0$, generalizing classical work of Du Val to positive characteristic. Moreover, we give simplified equations for all RDP del Pezzo surfaces of degree $1$ containing non-taut rational double points.\",\"PeriodicalId\":278201,\"journal\":{\"name\":\"arXiv: Algebraic Geometry\",\"volume\":\"200 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Algebraic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46298/epiga.2021.7041\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Algebraic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46298/epiga.2021.7041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
摘要
我们确定了代数闭域上任意次Picard秩的RDP del Pezzo曲面上出现的所有有理双点构型 $k$ 具有任意特性 ${\rm char}(k)=p \geq 0$,将杜瓦尔的经典著作推广到正特征。此外,我们还给出了所有RDP del Pezzo次曲面的简化方程 $1$ 包含非紧致有理双点的。
Which rational double points occur on del Pezzo surfaces
We determine all configurations of rational double points that occur on RDP del Pezzo surfaces of arbitrary degree and Picard rank over an algebraically closed field $k$ of arbitrary characteristic ${\rm char}(k)=p \geq 0$, generalizing classical work of Du Val to positive characteristic. Moreover, we give simplified equations for all RDP del Pezzo surfaces of degree $1$ containing non-taut rational double points.