del Pezzo曲面上有哪些有理双点

Claudia Stadlmayr
{"title":"del Pezzo曲面上有哪些有理双点","authors":"Claudia Stadlmayr","doi":"10.46298/epiga.2021.7041","DOIUrl":null,"url":null,"abstract":"We determine all configurations of rational double points that occur on RDP del Pezzo surfaces of arbitrary degree and Picard rank over an algebraically closed field $k$ of arbitrary characteristic ${\\rm char}(k)=p \\geq 0$, generalizing classical work of Du Val to positive characteristic. Moreover, we give simplified equations for all RDP del Pezzo surfaces of degree $1$ containing non-taut rational double points.","PeriodicalId":278201,"journal":{"name":"arXiv: Algebraic Geometry","volume":"200 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Which rational double points occur on del Pezzo surfaces\",\"authors\":\"Claudia Stadlmayr\",\"doi\":\"10.46298/epiga.2021.7041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We determine all configurations of rational double points that occur on RDP del Pezzo surfaces of arbitrary degree and Picard rank over an algebraically closed field $k$ of arbitrary characteristic ${\\\\rm char}(k)=p \\\\geq 0$, generalizing classical work of Du Val to positive characteristic. Moreover, we give simplified equations for all RDP del Pezzo surfaces of degree $1$ containing non-taut rational double points.\",\"PeriodicalId\":278201,\"journal\":{\"name\":\"arXiv: Algebraic Geometry\",\"volume\":\"200 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Algebraic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46298/epiga.2021.7041\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Algebraic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46298/epiga.2021.7041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们确定了代数闭域上任意次Picard秩的RDP del Pezzo曲面上出现的所有有理双点构型 $k$ 具有任意特性 ${\rm char}(k)=p \geq 0$,将杜瓦尔的经典著作推广到正特征。此外,我们还给出了所有RDP del Pezzo次曲面的简化方程 $1$ 包含非紧致有理双点的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Which rational double points occur on del Pezzo surfaces
We determine all configurations of rational double points that occur on RDP del Pezzo surfaces of arbitrary degree and Picard rank over an algebraically closed field $k$ of arbitrary characteristic ${\rm char}(k)=p \geq 0$, generalizing classical work of Du Val to positive characteristic. Moreover, we give simplified equations for all RDP del Pezzo surfaces of degree $1$ containing non-taut rational double points.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信