Karl-Ludwig Besser, Bho Matthiesen, A. Zappone, Eduard Axel Jorswieck
{"title":"基于深度学习的资源分配:需要多少训练数据?","authors":"Karl-Ludwig Besser, Bho Matthiesen, A. Zappone, Eduard Axel Jorswieck","doi":"10.1109/spawc48557.2020.9154298","DOIUrl":null,"url":null,"abstract":"We consider artificial neural networks based energyefficient power control for interference networks. The influence of different training set sizes and data augmentation is evaluated. It is shown that as few as 15,000 data points obtained from 300 channel realizations are sufficient to adequately predict almost globally optimal power allocations in a 4 user network. Moreover, we observe that, especially for larger scenarios, data augmentation is essential for successful training and far outweighs the effect of increasing the training data set size.","PeriodicalId":172835,"journal":{"name":"2020 IEEE 21st International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Deep Learning Based Resource Allocation: How Much Training Data is Needed?\",\"authors\":\"Karl-Ludwig Besser, Bho Matthiesen, A. Zappone, Eduard Axel Jorswieck\",\"doi\":\"10.1109/spawc48557.2020.9154298\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider artificial neural networks based energyefficient power control for interference networks. The influence of different training set sizes and data augmentation is evaluated. It is shown that as few as 15,000 data points obtained from 300 channel realizations are sufficient to adequately predict almost globally optimal power allocations in a 4 user network. Moreover, we observe that, especially for larger scenarios, data augmentation is essential for successful training and far outweighs the effect of increasing the training data set size.\",\"PeriodicalId\":172835,\"journal\":{\"name\":\"2020 IEEE 21st International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 21st International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/spawc48557.2020.9154298\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 21st International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/spawc48557.2020.9154298","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Deep Learning Based Resource Allocation: How Much Training Data is Needed?
We consider artificial neural networks based energyefficient power control for interference networks. The influence of different training set sizes and data augmentation is evaluated. It is shown that as few as 15,000 data points obtained from 300 channel realizations are sufficient to adequately predict almost globally optimal power allocations in a 4 user network. Moreover, we observe that, especially for larger scenarios, data augmentation is essential for successful training and far outweighs the effect of increasing the training data set size.