基于经验模态分解方法的调制分类研究

Ning An, Bingbing Li, M. Huang
{"title":"基于经验模态分解方法的调制分类研究","authors":"Ning An, Bingbing Li, M. Huang","doi":"10.1109/WCINS.2010.5541922","DOIUrl":null,"url":null,"abstract":"Automatic modulation classification (AMC) is a scheme to identify the data samples automatically. Empirical mode decomposition (EMD) is a self-adaptive signal processing method that can be applied to non-linear and non-stationary process perfectly. This paper presents a new method for AMC, using empirical mode decomposition (EMD) method. By utilizing the proposed feature extraction method, the disadvantages of conventional AMC algorithms, such as the feature value is sensitive to outliers in the data, the sample sequence is long and so on could be overcome. The advantage of our new algorithm is we don't need the channel information as a priori. Simulation results show that the performance of the proposed algorithm is comparable with other existing AMC algorithm.","PeriodicalId":156036,"journal":{"name":"2010 IEEE International Conference on Wireless Communications, Networking and Information Security","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on modulation classification using empirical mode decomposition method\",\"authors\":\"Ning An, Bingbing Li, M. Huang\",\"doi\":\"10.1109/WCINS.2010.5541922\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automatic modulation classification (AMC) is a scheme to identify the data samples automatically. Empirical mode decomposition (EMD) is a self-adaptive signal processing method that can be applied to non-linear and non-stationary process perfectly. This paper presents a new method for AMC, using empirical mode decomposition (EMD) method. By utilizing the proposed feature extraction method, the disadvantages of conventional AMC algorithms, such as the feature value is sensitive to outliers in the data, the sample sequence is long and so on could be overcome. The advantage of our new algorithm is we don't need the channel information as a priori. Simulation results show that the performance of the proposed algorithm is comparable with other existing AMC algorithm.\",\"PeriodicalId\":156036,\"journal\":{\"name\":\"2010 IEEE International Conference on Wireless Communications, Networking and Information Security\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Conference on Wireless Communications, Networking and Information Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WCINS.2010.5541922\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Wireless Communications, Networking and Information Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WCINS.2010.5541922","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

自动调制分类(AMC)是一种自动识别数据样本的方案。经验模态分解(EMD)是一种自适应的信号处理方法,可以很好地应用于非线性和非平稳过程。本文提出了一种基于经验模态分解(EMD)的AMC算法。利用本文提出的特征提取方法,克服了传统AMC算法特征值对数据异常值敏感、样本序列较长等缺点。新算法的优点是我们不需要先验的信道信息。仿真结果表明,该算法的性能与现有的AMC算法相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Research on modulation classification using empirical mode decomposition method
Automatic modulation classification (AMC) is a scheme to identify the data samples automatically. Empirical mode decomposition (EMD) is a self-adaptive signal processing method that can be applied to non-linear and non-stationary process perfectly. This paper presents a new method for AMC, using empirical mode decomposition (EMD) method. By utilizing the proposed feature extraction method, the disadvantages of conventional AMC algorithms, such as the feature value is sensitive to outliers in the data, the sample sequence is long and so on could be overcome. The advantage of our new algorithm is we don't need the channel information as a priori. Simulation results show that the performance of the proposed algorithm is comparable with other existing AMC algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信