用基本图和概率图形模型解释交通拥堵

Carla Silva, P. D’orey, Ana Aguiar
{"title":"用基本图和概率图形模型解释交通拥堵","authors":"Carla Silva, P. D’orey, Ana Aguiar","doi":"10.1109/ICDMW.2018.00090","DOIUrl":null,"url":null,"abstract":"Traffic congestion is a major economic, environmental and social issue that affects cities throughout the world. This research explains the complex associations of traffic flow based in an empirical-theoretical framework using real-world datasets. We propose a data fusion method to infer well-defined microscopic fundamental diagrams in dense urban areas making use of inductive loop detectors and taxi trajectory data. We also present a semi-naive Bayesian modeling approach to extract causality knowledge built on previous discriminated congestion in different road segments. A realistic empirical evaluation allows us to identify and quantify causalities between congestion and diverse confounding variables (e.g. meteorological conditions). Our aim is to contribute to efficient traffic flow by uncovering the tangled traffic congestion in an urban geographical area.","PeriodicalId":259600,"journal":{"name":"2018 IEEE International Conference on Data Mining Workshops (ICDMW)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Interpreting Traffic Congestion Using Fundamental Diagrams and Probabilistic Graphical Modeling\",\"authors\":\"Carla Silva, P. D’orey, Ana Aguiar\",\"doi\":\"10.1109/ICDMW.2018.00090\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traffic congestion is a major economic, environmental and social issue that affects cities throughout the world. This research explains the complex associations of traffic flow based in an empirical-theoretical framework using real-world datasets. We propose a data fusion method to infer well-defined microscopic fundamental diagrams in dense urban areas making use of inductive loop detectors and taxi trajectory data. We also present a semi-naive Bayesian modeling approach to extract causality knowledge built on previous discriminated congestion in different road segments. A realistic empirical evaluation allows us to identify and quantify causalities between congestion and diverse confounding variables (e.g. meteorological conditions). Our aim is to contribute to efficient traffic flow by uncovering the tangled traffic congestion in an urban geographical area.\",\"PeriodicalId\":259600,\"journal\":{\"name\":\"2018 IEEE International Conference on Data Mining Workshops (ICDMW)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference on Data Mining Workshops (ICDMW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDMW.2018.00090\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Data Mining Workshops (ICDMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW.2018.00090","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

交通拥堵是影响世界各地城市的主要经济、环境和社会问题。本研究使用真实世界的数据集,在经验-理论框架中解释了交通流量的复杂关联。我们提出了一种数据融合方法,利用电感环路探测器和出租车轨迹数据来推断密集城市地区定义良好的微观基本图。我们还提出了一种半朴素贝叶斯建模方法来提取因果关系知识,该知识建立在先前不同路段的区分拥堵的基础上。现实的经验评估使我们能够识别和量化拥堵与各种混杂变量(例如气象条件)之间的因果关系。我们的目标是通过揭示城市地理区域中错综复杂的交通拥堵来促进有效的交通流量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Interpreting Traffic Congestion Using Fundamental Diagrams and Probabilistic Graphical Modeling
Traffic congestion is a major economic, environmental and social issue that affects cities throughout the world. This research explains the complex associations of traffic flow based in an empirical-theoretical framework using real-world datasets. We propose a data fusion method to infer well-defined microscopic fundamental diagrams in dense urban areas making use of inductive loop detectors and taxi trajectory data. We also present a semi-naive Bayesian modeling approach to extract causality knowledge built on previous discriminated congestion in different road segments. A realistic empirical evaluation allows us to identify and quantify causalities between congestion and diverse confounding variables (e.g. meteorological conditions). Our aim is to contribute to efficient traffic flow by uncovering the tangled traffic congestion in an urban geographical area.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信