利用测井资料的各向异性参数识别岩相——以南苏丹Muglad盆地为例

S. Jang, W. Deng, S. Hwang, D. Lee
{"title":"利用测井资料的各向异性参数识别岩相——以南苏丹Muglad盆地为例","authors":"S. Jang, W. Deng, S. Hwang, D. Lee","doi":"10.3997/2214-4609.201902646","DOIUrl":null,"url":null,"abstract":"Summary The formation identification of reservoirs using seismic reflection data and log data for anisotropic reservoirs has tendencies in differences to the true formation. Considering on the anisotropic parameters is the one of methods for reducing this difference. For the reservoir formation discrimination of lithofacies, surface geological survey, geophysical exploration, drill core, and log data are analysed. In this study we tried to find out anisotropic parameters from log data using Backus averaging, then applied it to lithofacies discrimination. We calculated Lame’s constant and shear modulus from the log data in the Muglad Basin. After applying Backus averaging to these, we obtained the stiffness coefficients then calculated the anisotropic parameters. The lithofacies for reservoirs were classified by 11 layers based on the anisotropic parameters. If there is no drill core data or drilling-cuttings, the anisotropic parameters from log data is efficient for lithofacies discrimination. The classification of sedimentary layers without drill core or drill-cuttings, this approach will be useful for discrimination of lithofacies using anisotropic parameters from Vp, Vs and density log.","PeriodicalId":134345,"journal":{"name":"10th Congress of the Balkan Geophysical Society","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lithofacies identification using anisotropic parameters from logging data:A case study on Muglad Basin, South Sudan\",\"authors\":\"S. Jang, W. Deng, S. Hwang, D. Lee\",\"doi\":\"10.3997/2214-4609.201902646\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary The formation identification of reservoirs using seismic reflection data and log data for anisotropic reservoirs has tendencies in differences to the true formation. Considering on the anisotropic parameters is the one of methods for reducing this difference. For the reservoir formation discrimination of lithofacies, surface geological survey, geophysical exploration, drill core, and log data are analysed. In this study we tried to find out anisotropic parameters from log data using Backus averaging, then applied it to lithofacies discrimination. We calculated Lame’s constant and shear modulus from the log data in the Muglad Basin. After applying Backus averaging to these, we obtained the stiffness coefficients then calculated the anisotropic parameters. The lithofacies for reservoirs were classified by 11 layers based on the anisotropic parameters. If there is no drill core data or drilling-cuttings, the anisotropic parameters from log data is efficient for lithofacies discrimination. The classification of sedimentary layers without drill core or drill-cuttings, this approach will be useful for discrimination of lithofacies using anisotropic parameters from Vp, Vs and density log.\",\"PeriodicalId\":134345,\"journal\":{\"name\":\"10th Congress of the Balkan Geophysical Society\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"10th Congress of the Balkan Geophysical Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3997/2214-4609.201902646\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"10th Congress of the Balkan Geophysical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3997/2214-4609.201902646","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

利用地震反射资料和测井资料对各向异性储层进行储层识别与真实储层存在差异趋势。考虑各向异性参数是减小这种差异的方法之一。通过地面地质调查、物探、岩心和测井资料进行岩相储层判别。本文尝试利用Backus平均法从测井资料中找出各向异性参数,并将其应用于岩相判别。利用Muglad盆地的测井资料计算了Lame常数和剪切模量。对其进行Backus平均,得到刚度系数,并计算各向异性参数。根据各向异性参数将储层岩相划分为11层。在没有岩心和钻屑的情况下,利用测井资料的各向异性参数进行岩相判别是有效的。该方法对无岩心、无岩屑的沉积层进行分类,将有助于利用Vp、Vs和密度测井等各向异性参数进行岩相判别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lithofacies identification using anisotropic parameters from logging data:A case study on Muglad Basin, South Sudan
Summary The formation identification of reservoirs using seismic reflection data and log data for anisotropic reservoirs has tendencies in differences to the true formation. Considering on the anisotropic parameters is the one of methods for reducing this difference. For the reservoir formation discrimination of lithofacies, surface geological survey, geophysical exploration, drill core, and log data are analysed. In this study we tried to find out anisotropic parameters from log data using Backus averaging, then applied it to lithofacies discrimination. We calculated Lame’s constant and shear modulus from the log data in the Muglad Basin. After applying Backus averaging to these, we obtained the stiffness coefficients then calculated the anisotropic parameters. The lithofacies for reservoirs were classified by 11 layers based on the anisotropic parameters. If there is no drill core data or drilling-cuttings, the anisotropic parameters from log data is efficient for lithofacies discrimination. The classification of sedimentary layers without drill core or drill-cuttings, this approach will be useful for discrimination of lithofacies using anisotropic parameters from Vp, Vs and density log.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信