基于WPT和GWO-PNN的PMSM间歇短故障诊断

Cheng Fei, Jun Shen
{"title":"基于WPT和GWO-PNN的PMSM间歇短故障诊断","authors":"Cheng Fei, Jun Shen","doi":"10.1109/ISAS59543.2023.10164522","DOIUrl":null,"url":null,"abstract":"Real-time and accurate fault diagnosis for permanent magnet synchronous motor (PMSM) is crucial because interturn short fault (ISF) can disrupt its normal operation. This paper establishes different levels of ISF in Maxwell software to obtain PMSM’s operation data under various working conditions. Wavelet packet transform (WPT) is employed to denoise the original signal, and the preprocessed data is trained using a probabilistic neural network (PNN). By optimizing the PNN with grey wolf optimizer (GWO), a GWO-PNN model is obtained. The experiment shows that the GWO-PNN has higher diagnostic accuracy than PNN.","PeriodicalId":199115,"journal":{"name":"2023 6th International Symposium on Autonomous Systems (ISAS)","volume":"173 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PMSM Interturn Short Fault Diagnosis Based on WPT and GWO-PNN\",\"authors\":\"Cheng Fei, Jun Shen\",\"doi\":\"10.1109/ISAS59543.2023.10164522\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Real-time and accurate fault diagnosis for permanent magnet synchronous motor (PMSM) is crucial because interturn short fault (ISF) can disrupt its normal operation. This paper establishes different levels of ISF in Maxwell software to obtain PMSM’s operation data under various working conditions. Wavelet packet transform (WPT) is employed to denoise the original signal, and the preprocessed data is trained using a probabilistic neural network (PNN). By optimizing the PNN with grey wolf optimizer (GWO), a GWO-PNN model is obtained. The experiment shows that the GWO-PNN has higher diagnostic accuracy than PNN.\",\"PeriodicalId\":199115,\"journal\":{\"name\":\"2023 6th International Symposium on Autonomous Systems (ISAS)\",\"volume\":\"173 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 6th International Symposium on Autonomous Systems (ISAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISAS59543.2023.10164522\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 6th International Symposium on Autonomous Systems (ISAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISAS59543.2023.10164522","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

永磁同步电动机匝间短故障会影响电动机的正常运行,因此实时准确的故障诊断至关重要。本文在Maxwell软件中建立了不同层次的ISF,获得了PMSM在不同工况下的运行数据。采用小波包变换(WPT)对原始信号进行去噪,并利用概率神经网络(PNN)对预处理后的数据进行训练。利用灰狼优化器(GWO)对PNN进行优化,得到了GWO-PNN模型。实验表明,GWO-PNN比PNN具有更高的诊断准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PMSM Interturn Short Fault Diagnosis Based on WPT and GWO-PNN
Real-time and accurate fault diagnosis for permanent magnet synchronous motor (PMSM) is crucial because interturn short fault (ISF) can disrupt its normal operation. This paper establishes different levels of ISF in Maxwell software to obtain PMSM’s operation data under various working conditions. Wavelet packet transform (WPT) is employed to denoise the original signal, and the preprocessed data is trained using a probabilistic neural network (PNN). By optimizing the PNN with grey wolf optimizer (GWO), a GWO-PNN model is obtained. The experiment shows that the GWO-PNN has higher diagnostic accuracy than PNN.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信