180nm CMOS集成量子自旋控制系统

Kaisarbek Omirzakhov, M. H. Idjadi, Tzu-Yung Huang, S. Breitweiser, David A. Hopper, L. Bassett, F. Aflatouni
{"title":"180nm CMOS集成量子自旋控制系统","authors":"Kaisarbek Omirzakhov, M. H. Idjadi, Tzu-Yung Huang, S. Breitweiser, David A. Hopper, L. Bassett, F. Aflatouni","doi":"10.1109/RFIC54546.2022.9863137","DOIUrl":null,"url":null,"abstract":"Solid-state electron spins are key building blocks for emerging applications in quantum information science, including quantum computers, quantum communication links, and quantum sensors. However, solid-state spins are controlled using complex microwave pulse sequences, which are typically generated using benchtop electrical instruments. Integration of the required electronics will enable realization of a scalable low-power and compact optically addressable quantum system. Here, we report an integrated reconfigurable quantum control system, which is used to perform Rabi and Ramsey oscillation measurements for an NV center in diamond. The 180nm CMOS chip, fabricated within a footprint of 3.02mm2, consumes 80 mW of power, and is capable of generating a tunable microwave signal from 1.6 GHz to 2.6 GHz modulated with a sequence of up to 4098 reconfigurable pulses with a pulse width adjustable from 10ns to 42ms and a pulse-to-pulse delay adjustable between 18 ns to 42m, at a resolution of 2.5 ns.","PeriodicalId":415294,"journal":{"name":"2022 IEEE Radio Frequency Integrated Circuits Symposium (RFIC)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An Integrated Quantum Spin Control System in 180nm CMOS\",\"authors\":\"Kaisarbek Omirzakhov, M. H. Idjadi, Tzu-Yung Huang, S. Breitweiser, David A. Hopper, L. Bassett, F. Aflatouni\",\"doi\":\"10.1109/RFIC54546.2022.9863137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Solid-state electron spins are key building blocks for emerging applications in quantum information science, including quantum computers, quantum communication links, and quantum sensors. However, solid-state spins are controlled using complex microwave pulse sequences, which are typically generated using benchtop electrical instruments. Integration of the required electronics will enable realization of a scalable low-power and compact optically addressable quantum system. Here, we report an integrated reconfigurable quantum control system, which is used to perform Rabi and Ramsey oscillation measurements for an NV center in diamond. The 180nm CMOS chip, fabricated within a footprint of 3.02mm2, consumes 80 mW of power, and is capable of generating a tunable microwave signal from 1.6 GHz to 2.6 GHz modulated with a sequence of up to 4098 reconfigurable pulses with a pulse width adjustable from 10ns to 42ms and a pulse-to-pulse delay adjustable between 18 ns to 42m, at a resolution of 2.5 ns.\",\"PeriodicalId\":415294,\"journal\":{\"name\":\"2022 IEEE Radio Frequency Integrated Circuits Symposium (RFIC)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Radio Frequency Integrated Circuits Symposium (RFIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RFIC54546.2022.9863137\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Radio Frequency Integrated Circuits Symposium (RFIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RFIC54546.2022.9863137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

固态电子自旋是量子信息科学新兴应用的关键组成部分,包括量子计算机、量子通信链路和量子传感器。然而,固态自旋是使用复杂的微波脉冲序列来控制的,这些脉冲序列通常是使用台式电气仪器产生的。集成所需的电子器件将实现可扩展的低功耗和紧凑的光学可寻址量子系统。在这里,我们报告了一个集成的可重构量子控制系统,该系统用于对金刚石中的NV中心进行Rabi和Ramsey振荡测量。该180nm CMOS芯片占地面积为3.02mm2,功耗为80mw,能够产生1.6 GHz至2.6 GHz的可调谐微波信号,可通过多达4098个可重构脉冲序列进行调制,脉冲宽度可在10ns至42ms之间调节,脉冲对脉冲延迟可在18ns至42m之间调节,分辨率为2.5 ns。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Integrated Quantum Spin Control System in 180nm CMOS
Solid-state electron spins are key building blocks for emerging applications in quantum information science, including quantum computers, quantum communication links, and quantum sensors. However, solid-state spins are controlled using complex microwave pulse sequences, which are typically generated using benchtop electrical instruments. Integration of the required electronics will enable realization of a scalable low-power and compact optically addressable quantum system. Here, we report an integrated reconfigurable quantum control system, which is used to perform Rabi and Ramsey oscillation measurements for an NV center in diamond. The 180nm CMOS chip, fabricated within a footprint of 3.02mm2, consumes 80 mW of power, and is capable of generating a tunable microwave signal from 1.6 GHz to 2.6 GHz modulated with a sequence of up to 4098 reconfigurable pulses with a pulse width adjustable from 10ns to 42ms and a pulse-to-pulse delay adjustable between 18 ns to 42m, at a resolution of 2.5 ns.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信