{"title":"一种对配置复杂性进行基准测试的方法","authors":"Aaron B. Brown, J. Hellerstein","doi":"10.1145/1133572.1133609","DOIUrl":null,"url":null,"abstract":"Configuration is the process whereby components are assembled or adjusted to produce a functional system that operates at a specified level of performance. Today, the complexity of configuration is a major impediment to deploying and managing computer systems. We describe an approach to quantifying configuration complexity, with the ultimate goal of producing a configuration complexity benchmark. Our belief is that such a benchmark can drive progress towards self-configuring systems. Unlike traditional workload-based performance benchmarks, our approach is process-based. It generates metrics that reflect the level of human involvement in the configuration process, quantified by interaction time and probability of successful configuration. It computes the metrics using a model of a standardized human operator, calibrated in advance by a user study that measures operator behavior on a set of parameterized canonical configuration actions. The model captures the human component of configuration complexity at low cost and provides representativeness and reproducibility.","PeriodicalId":285758,"journal":{"name":"EW 11","volume":"146 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":"{\"title\":\"An approach to benchmarking configuration complexity\",\"authors\":\"Aaron B. Brown, J. Hellerstein\",\"doi\":\"10.1145/1133572.1133609\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Configuration is the process whereby components are assembled or adjusted to produce a functional system that operates at a specified level of performance. Today, the complexity of configuration is a major impediment to deploying and managing computer systems. We describe an approach to quantifying configuration complexity, with the ultimate goal of producing a configuration complexity benchmark. Our belief is that such a benchmark can drive progress towards self-configuring systems. Unlike traditional workload-based performance benchmarks, our approach is process-based. It generates metrics that reflect the level of human involvement in the configuration process, quantified by interaction time and probability of successful configuration. It computes the metrics using a model of a standardized human operator, calibrated in advance by a user study that measures operator behavior on a set of parameterized canonical configuration actions. The model captures the human component of configuration complexity at low cost and provides representativeness and reproducibility.\",\"PeriodicalId\":285758,\"journal\":{\"name\":\"EW 11\",\"volume\":\"146 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"34\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EW 11\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1133572.1133609\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EW 11","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1133572.1133609","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An approach to benchmarking configuration complexity
Configuration is the process whereby components are assembled or adjusted to produce a functional system that operates at a specified level of performance. Today, the complexity of configuration is a major impediment to deploying and managing computer systems. We describe an approach to quantifying configuration complexity, with the ultimate goal of producing a configuration complexity benchmark. Our belief is that such a benchmark can drive progress towards self-configuring systems. Unlike traditional workload-based performance benchmarks, our approach is process-based. It generates metrics that reflect the level of human involvement in the configuration process, quantified by interaction time and probability of successful configuration. It computes the metrics using a model of a standardized human operator, calibrated in advance by a user study that measures operator behavior on a set of parameterized canonical configuration actions. The model captures the human component of configuration complexity at low cost and provides representativeness and reproducibility.