{"title":"氧化物厚度对32nm Pmosfet可靠性的影响","authors":"D. A. Hadi, S. Hatta, N. Soin","doi":"10.1109/SMELEC.2010.5549578","DOIUrl":null,"url":null,"abstract":"Negative Bias Temperature Instability (NBTI) has become one of the critical reliability concerns as scaling down CMOS technology especially on the pMOSFET device. A simulation study had been conducted on 32 nm conventional pMOSFET using the technology CAD (TCAD) Sentaurus Synopsys simulator tool. In this paper, the effects of the gate oxide thickness together with drain bias variations on the NBTI are studied. The effect on the device parameters such as interface traps concentration (Nit), threshold voltage (Vth) and drain current (Id) degradation had been investigated and explained in detail.","PeriodicalId":308501,"journal":{"name":"2010 IEEE International Conference on Semiconductor Electronics (ICSE2010)","volume":"269 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Effect of oxide thickness on 32nm Pmosfet reliability\",\"authors\":\"D. A. Hadi, S. Hatta, N. Soin\",\"doi\":\"10.1109/SMELEC.2010.5549578\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Negative Bias Temperature Instability (NBTI) has become one of the critical reliability concerns as scaling down CMOS technology especially on the pMOSFET device. A simulation study had been conducted on 32 nm conventional pMOSFET using the technology CAD (TCAD) Sentaurus Synopsys simulator tool. In this paper, the effects of the gate oxide thickness together with drain bias variations on the NBTI are studied. The effect on the device parameters such as interface traps concentration (Nit), threshold voltage (Vth) and drain current (Id) degradation had been investigated and explained in detail.\",\"PeriodicalId\":308501,\"journal\":{\"name\":\"2010 IEEE International Conference on Semiconductor Electronics (ICSE2010)\",\"volume\":\"269 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Conference on Semiconductor Electronics (ICSE2010)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SMELEC.2010.5549578\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Semiconductor Electronics (ICSE2010)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMELEC.2010.5549578","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Effect of oxide thickness on 32nm Pmosfet reliability
Negative Bias Temperature Instability (NBTI) has become one of the critical reliability concerns as scaling down CMOS technology especially on the pMOSFET device. A simulation study had been conducted on 32 nm conventional pMOSFET using the technology CAD (TCAD) Sentaurus Synopsys simulator tool. In this paper, the effects of the gate oxide thickness together with drain bias variations on the NBTI are studied. The effect on the device parameters such as interface traps concentration (Nit), threshold voltage (Vth) and drain current (Id) degradation had been investigated and explained in detail.