Navid Asmari, Mustafa Kangül, Santiago H. Andany, A. Karimi, G. Fantner
{"title":"基于遗传算法的原子力显微镜数据驱动前馈迟滞补偿*","authors":"Navid Asmari, Mustafa Kangül, Santiago H. Andany, A. Karimi, G. Fantner","doi":"10.1109/MARSS55884.2022.9870479","DOIUrl":null,"url":null,"abstract":"Nonlinear dynamics of piezo actuators such as hysteresis, distort the Atomic Force Microscopy (AFM) images as they adversely affect the accuracy of the nano-positioning setup. To compensate for the effects of hysteresis on lateral scanner actuators of AFM, a data-driven feedforward controller design algorithm is proposed. The pair of forward and backward images of a sample are used to extract a mapping between the trace and retrace motion of the actuator. A model corresponding to the input-output mapping of the actuator is defined with a set of unknown parameters. The values of these parameters, which shape the hysteresis curves of the actuator, are optimized through defining and solving an optimization problem. A genetic algorithm is utilized as a tool to look for the optimal values. The hysteresis mapping model is then implemented in the form of an inversion-based feedforward controller to correct the scan waveforms and get matching forward and backward images of the sample. The proposed sensor-less data-driven method is easy to implement as it does not depend on the instrument, the sample under study, or the imaging properties.","PeriodicalId":144730,"journal":{"name":"2022 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS)","volume":"12 6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data-Driven Feedforward Hysteresis Compensation with Genetic Algorithm for Atomic Force Microscope*\",\"authors\":\"Navid Asmari, Mustafa Kangül, Santiago H. Andany, A. Karimi, G. Fantner\",\"doi\":\"10.1109/MARSS55884.2022.9870479\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nonlinear dynamics of piezo actuators such as hysteresis, distort the Atomic Force Microscopy (AFM) images as they adversely affect the accuracy of the nano-positioning setup. To compensate for the effects of hysteresis on lateral scanner actuators of AFM, a data-driven feedforward controller design algorithm is proposed. The pair of forward and backward images of a sample are used to extract a mapping between the trace and retrace motion of the actuator. A model corresponding to the input-output mapping of the actuator is defined with a set of unknown parameters. The values of these parameters, which shape the hysteresis curves of the actuator, are optimized through defining and solving an optimization problem. A genetic algorithm is utilized as a tool to look for the optimal values. The hysteresis mapping model is then implemented in the form of an inversion-based feedforward controller to correct the scan waveforms and get matching forward and backward images of the sample. The proposed sensor-less data-driven method is easy to implement as it does not depend on the instrument, the sample under study, or the imaging properties.\",\"PeriodicalId\":144730,\"journal\":{\"name\":\"2022 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS)\",\"volume\":\"12 6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MARSS55884.2022.9870479\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MARSS55884.2022.9870479","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Data-Driven Feedforward Hysteresis Compensation with Genetic Algorithm for Atomic Force Microscope*
Nonlinear dynamics of piezo actuators such as hysteresis, distort the Atomic Force Microscopy (AFM) images as they adversely affect the accuracy of the nano-positioning setup. To compensate for the effects of hysteresis on lateral scanner actuators of AFM, a data-driven feedforward controller design algorithm is proposed. The pair of forward and backward images of a sample are used to extract a mapping between the trace and retrace motion of the actuator. A model corresponding to the input-output mapping of the actuator is defined with a set of unknown parameters. The values of these parameters, which shape the hysteresis curves of the actuator, are optimized through defining and solving an optimization problem. A genetic algorithm is utilized as a tool to look for the optimal values. The hysteresis mapping model is then implemented in the form of an inversion-based feedforward controller to correct the scan waveforms and get matching forward and backward images of the sample. The proposed sensor-less data-driven method is easy to implement as it does not depend on the instrument, the sample under study, or the imaging properties.