MedLeaf:用于绘制和鉴定印度尼西亚药用植物的移动生物多样性信息学工具

Y. Herdiyeni, Asep Rahmat Ginanjar, M. Rake, Linggar Anggoro, S. Douady, Ervizal A. M. Zuhud
{"title":"MedLeaf:用于绘制和鉴定印度尼西亚药用植物的移动生物多样性信息学工具","authors":"Y. Herdiyeni, Asep Rahmat Ginanjar, M. Rake, Linggar Anggoro, S. Douady, Ervizal A. M. Zuhud","doi":"10.1109/SOCPAR.2015.7492783","DOIUrl":null,"url":null,"abstract":"We presents a mobile biodiversity informatics tools for identifying and mapping Indonesian medicinal plants. The system - called MedLeaf - has been developed as a prototype data resource for documenting, integrating, disseminating, and identifying of Indonesian medicinal plants. Identification of medicinal plant is done automatically based on digital image processing. Fuzzy Local Binary Pattern (LBP) and geometrical features are used to extract leaves features. Probabilistic Neural Network is used as classifier for discrimination. Data set consist of 85 species of Indonesian medicinal plants with 3,502 leaves digital images. Our results indicate that combination of leaves features outperform than using single features with accuracy 88.5%. The distribution of medicinal plants can be shown on mobile phone using GIS application. The application is essential to help people identify the medicinal plants and disseminate information of medicinal plants distribution in Indonesia.","PeriodicalId":409493,"journal":{"name":"2015 7th International Conference of Soft Computing and Pattern Recognition (SoCPaR)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"MedLeaf: Mobile biodiversity informatics tool for mapping and identifying Indonesian medicinal Plants\",\"authors\":\"Y. Herdiyeni, Asep Rahmat Ginanjar, M. Rake, Linggar Anggoro, S. Douady, Ervizal A. M. Zuhud\",\"doi\":\"10.1109/SOCPAR.2015.7492783\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We presents a mobile biodiversity informatics tools for identifying and mapping Indonesian medicinal plants. The system - called MedLeaf - has been developed as a prototype data resource for documenting, integrating, disseminating, and identifying of Indonesian medicinal plants. Identification of medicinal plant is done automatically based on digital image processing. Fuzzy Local Binary Pattern (LBP) and geometrical features are used to extract leaves features. Probabilistic Neural Network is used as classifier for discrimination. Data set consist of 85 species of Indonesian medicinal plants with 3,502 leaves digital images. Our results indicate that combination of leaves features outperform than using single features with accuracy 88.5%. The distribution of medicinal plants can be shown on mobile phone using GIS application. The application is essential to help people identify the medicinal plants and disseminate information of medicinal plants distribution in Indonesia.\",\"PeriodicalId\":409493,\"journal\":{\"name\":\"2015 7th International Conference of Soft Computing and Pattern Recognition (SoCPaR)\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 7th International Conference of Soft Computing and Pattern Recognition (SoCPaR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SOCPAR.2015.7492783\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 7th International Conference of Soft Computing and Pattern Recognition (SoCPaR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SOCPAR.2015.7492783","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

我们提出了一个移动生物多样性信息学工具,用于识别和绘制印度尼西亚药用植物。这个名为MedLeaf的系统是作为记录、整合、传播和识别印度尼西亚药用植物的原型数据资源而开发的。基于数字图像处理技术实现药用植物的自动识别。利用模糊局部二值模式(LBP)和几何特征提取树叶特征。采用概率神经网络作为分类器进行判别。数据集包括85种印度尼西亚药用植物,3502张叶子的数字图像。结果表明,叶片特征组合优于单一特征,准确率为88.5%。利用GIS应用程序在手机上显示药用植物的分布情况。该应用程序对帮助人们识别药用植物和传播印度尼西亚药用植物分布信息至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MedLeaf: Mobile biodiversity informatics tool for mapping and identifying Indonesian medicinal Plants
We presents a mobile biodiversity informatics tools for identifying and mapping Indonesian medicinal plants. The system - called MedLeaf - has been developed as a prototype data resource for documenting, integrating, disseminating, and identifying of Indonesian medicinal plants. Identification of medicinal plant is done automatically based on digital image processing. Fuzzy Local Binary Pattern (LBP) and geometrical features are used to extract leaves features. Probabilistic Neural Network is used as classifier for discrimination. Data set consist of 85 species of Indonesian medicinal plants with 3,502 leaves digital images. Our results indicate that combination of leaves features outperform than using single features with accuracy 88.5%. The distribution of medicinal plants can be shown on mobile phone using GIS application. The application is essential to help people identify the medicinal plants and disseminate information of medicinal plants distribution in Indonesia.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信