最佳LED光谱复用NIR2RGB转换

Lei Liu, Yuze Chen, Junchi Yan, Yinqiang Zheng
{"title":"最佳LED光谱复用NIR2RGB转换","authors":"Lei Liu, Yuze Chen, Junchi Yan, Yinqiang Zheng","doi":"10.1109/CVPR52688.2022.01232","DOIUrl":null,"url":null,"abstract":"The industry practice for night video surveillance is to use auxiliary near-infrared (NIR) LEDs, usually centered at 850nm or 940nm, for scene illumination. NIR LEDs are used to save power consumption while hiding the surveillance coverage area from naked human eyes. The captured images are almost monochromatic, and visual color and texture tend to disappear, which hinders human and machine perception. A few existing studies have tried to convert such NIR images to RGB images through deep learning, which can not provide satisfying results, nor generalize well beyond the training dataset. In this paper, we aim to break the fundamental restrictions on reliable NIR-to-RGB (NIR2RGB) translation by examining the imaging mechanism of single-chip silicon-based RGB cameras under NIR illuminations, and propose to retrieve the optimal LED multiplexing via deep learning. Experimental results show that this translation task can be significantly improved by properly multiplexing NIR LEDs close to the visible spectral range than using 850nm and 940nm LEDs.","PeriodicalId":355552,"journal":{"name":"2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"113 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Optimal LED Spectral Multiplexing for NIR2RGB Translation\",\"authors\":\"Lei Liu, Yuze Chen, Junchi Yan, Yinqiang Zheng\",\"doi\":\"10.1109/CVPR52688.2022.01232\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The industry practice for night video surveillance is to use auxiliary near-infrared (NIR) LEDs, usually centered at 850nm or 940nm, for scene illumination. NIR LEDs are used to save power consumption while hiding the surveillance coverage area from naked human eyes. The captured images are almost monochromatic, and visual color and texture tend to disappear, which hinders human and machine perception. A few existing studies have tried to convert such NIR images to RGB images through deep learning, which can not provide satisfying results, nor generalize well beyond the training dataset. In this paper, we aim to break the fundamental restrictions on reliable NIR-to-RGB (NIR2RGB) translation by examining the imaging mechanism of single-chip silicon-based RGB cameras under NIR illuminations, and propose to retrieve the optimal LED multiplexing via deep learning. Experimental results show that this translation task can be significantly improved by properly multiplexing NIR LEDs close to the visible spectral range than using 850nm and 940nm LEDs.\",\"PeriodicalId\":355552,\"journal\":{\"name\":\"2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)\",\"volume\":\"113 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR52688.2022.01232\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR52688.2022.01232","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

夜间视频监控的行业惯例是使用辅助的近红外(NIR) led,通常以850nm或940nm为中心,用于场景照明。使用近红外led可以节省功耗,同时可以隐藏肉眼看不到的监控覆盖区域。捕获的图像几乎是单色的,视觉颜色和纹理往往会消失,这阻碍了人类和机器的感知。现有的一些研究试图通过深度学习将这种近红外图像转换为RGB图像,但不能提供令人满意的结果,也不能很好地推广到训练数据集之外。在本文中,我们旨在通过研究单片硅基RGB相机在近红外照明下的成像机制,打破可靠的NIR-to-RGB (NIR2RGB)转换的基本限制,并提出通过深度学习检索最佳LED复用。实验结果表明,与使用850nm和940nm的led相比,适当复用接近可见光谱范围的近红外led可以显著改善这种转换任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal LED Spectral Multiplexing for NIR2RGB Translation
The industry practice for night video surveillance is to use auxiliary near-infrared (NIR) LEDs, usually centered at 850nm or 940nm, for scene illumination. NIR LEDs are used to save power consumption while hiding the surveillance coverage area from naked human eyes. The captured images are almost monochromatic, and visual color and texture tend to disappear, which hinders human and machine perception. A few existing studies have tried to convert such NIR images to RGB images through deep learning, which can not provide satisfying results, nor generalize well beyond the training dataset. In this paper, we aim to break the fundamental restrictions on reliable NIR-to-RGB (NIR2RGB) translation by examining the imaging mechanism of single-chip silicon-based RGB cameras under NIR illuminations, and propose to retrieve the optimal LED multiplexing via deep learning. Experimental results show that this translation task can be significantly improved by properly multiplexing NIR LEDs close to the visible spectral range than using 850nm and 940nm LEDs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信