具有非平凡自同构参数(37,18,8,9)的强正则图

D. Crnković, Marija Maksimović
{"title":"具有非平凡自同构参数(37,18,8,9)的强正则图","authors":"D. Crnković, Marija Maksimović","doi":"10.26493/2590-9770.1295.25b","DOIUrl":null,"url":null,"abstract":"All strongly regular graphs having at most 36 vetrices have been enumerated. Hence, the first open case is enumeration of the SRGs with parameters (37,18,8,9). In this paper we show that there are exactly forty SRGs with parameters (37,18,8,9) having nontrivial automorphisms. Comparing the constructed graphs with previously known SRGs with these parameters we conclude that six of the SRGs with parameters (37,18,8,9) constructed in this paper are new, and that up to isomorphism there are at least 6766 strongly regular graphs with parameters (37,18,8,9).","PeriodicalId":236892,"journal":{"name":"Art Discret. Appl. Math.","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Strongly regular graphs with parameters (37, 18, 8, 9) having nontrivial automorphisms\",\"authors\":\"D. Crnković, Marija Maksimović\",\"doi\":\"10.26493/2590-9770.1295.25b\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"All strongly regular graphs having at most 36 vetrices have been enumerated. Hence, the first open case is enumeration of the SRGs with parameters (37,18,8,9). In this paper we show that there are exactly forty SRGs with parameters (37,18,8,9) having nontrivial automorphisms. Comparing the constructed graphs with previously known SRGs with these parameters we conclude that six of the SRGs with parameters (37,18,8,9) constructed in this paper are new, and that up to isomorphism there are at least 6766 strongly regular graphs with parameters (37,18,8,9).\",\"PeriodicalId\":236892,\"journal\":{\"name\":\"Art Discret. Appl. Math.\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Art Discret. Appl. Math.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26493/2590-9770.1295.25b\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Art Discret. Appl. Math.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26493/2590-9770.1295.25b","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

列举了所有最多有36个向量的强正则图。因此,第一个开放的情况是枚举具有参数(37,18,8,9)的srg。在本文中,我们证明了有40个参数为(37,18,8,9)的srg具有非平凡自同构。将所构造的图与已知的具有这些参数的srg进行比较,我们发现本文构造的具有参数(37,18,8,9)的srg中有6个是新的,并且在同构上至少有6766个具有参数(37,18,8,9)的强正则图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Strongly regular graphs with parameters (37, 18, 8, 9) having nontrivial automorphisms
All strongly regular graphs having at most 36 vetrices have been enumerated. Hence, the first open case is enumeration of the SRGs with parameters (37,18,8,9). In this paper we show that there are exactly forty SRGs with parameters (37,18,8,9) having nontrivial automorphisms. Comparing the constructed graphs with previously known SRGs with these parameters we conclude that six of the SRGs with parameters (37,18,8,9) constructed in this paper are new, and that up to isomorphism there are at least 6766 strongly regular graphs with parameters (37,18,8,9).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信