基于类分类器外观模型和熵粒子滤波的鲁棒视觉跟踪

Yu Song, Qingling Li, Deli Yan, Y. Kang
{"title":"基于类分类器外观模型和熵粒子滤波的鲁棒视觉跟踪","authors":"Yu Song, Qingling Li, Deli Yan, Y. Kang","doi":"10.1109/WCICA.2012.6359397","DOIUrl":null,"url":null,"abstract":"The detection based visual tracker treats tracking as the object and its surround background online classification problem. There are two main difficult issues in this method: one is to specify exact labels for the online samples, the other is to avoid template drift that caused by wrong update of the classifier-like appearance model. To overcome the problems, a novel tracking algorithm based on online Multiple Instance Learning (MIL) and entropy particle filter is proposed. Main contributions of our work are: (1) we introduce MIL in particle filter visual tracking framework to reduce the online training error of the classifier-like appearance model; (2) the appearance model consists of an initial fixed MIL classifier and an online dynamic MIL classifier; (3) a particle set maximum negative entropy criterion is designed to online fuse the two classifiers. Experimental results verify the effectiveness of the proposed algorithm.","PeriodicalId":114901,"journal":{"name":"Proceedings of the 10th World Congress on Intelligent Control and Automation","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust visual tracking with classifier-like appearance model and entropy particle filter\",\"authors\":\"Yu Song, Qingling Li, Deli Yan, Y. Kang\",\"doi\":\"10.1109/WCICA.2012.6359397\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The detection based visual tracker treats tracking as the object and its surround background online classification problem. There are two main difficult issues in this method: one is to specify exact labels for the online samples, the other is to avoid template drift that caused by wrong update of the classifier-like appearance model. To overcome the problems, a novel tracking algorithm based on online Multiple Instance Learning (MIL) and entropy particle filter is proposed. Main contributions of our work are: (1) we introduce MIL in particle filter visual tracking framework to reduce the online training error of the classifier-like appearance model; (2) the appearance model consists of an initial fixed MIL classifier and an online dynamic MIL classifier; (3) a particle set maximum negative entropy criterion is designed to online fuse the two classifiers. Experimental results verify the effectiveness of the proposed algorithm.\",\"PeriodicalId\":114901,\"journal\":{\"name\":\"Proceedings of the 10th World Congress on Intelligent Control and Automation\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 10th World Congress on Intelligent Control and Automation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WCICA.2012.6359397\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 10th World Congress on Intelligent Control and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WCICA.2012.6359397","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于检测的视觉跟踪器将目标作为目标,将其周围背景在线分类。该方法的难点主要有两个:一是为在线样本指定准确的标签,二是避免由于类分类器外观模型的错误更新而导致的模板漂移。为了克服这些问题,提出了一种基于在线多实例学习(MIL)和熵粒子滤波的跟踪算法。本文的主要贡献有:(1)在粒子滤波视觉跟踪框架中引入MIL,降低类分类器外观模型的在线训练误差;(2)外观模型由初始固定MIL分类器和在线动态MIL分类器组成;(3)设计了一个粒子集最大负熵准则来在线融合两个分类器。实验结果验证了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust visual tracking with classifier-like appearance model and entropy particle filter
The detection based visual tracker treats tracking as the object and its surround background online classification problem. There are two main difficult issues in this method: one is to specify exact labels for the online samples, the other is to avoid template drift that caused by wrong update of the classifier-like appearance model. To overcome the problems, a novel tracking algorithm based on online Multiple Instance Learning (MIL) and entropy particle filter is proposed. Main contributions of our work are: (1) we introduce MIL in particle filter visual tracking framework to reduce the online training error of the classifier-like appearance model; (2) the appearance model consists of an initial fixed MIL classifier and an online dynamic MIL classifier; (3) a particle set maximum negative entropy criterion is designed to online fuse the two classifiers. Experimental results verify the effectiveness of the proposed algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信