Maarten Hattink, G. D. Guglielmo, L. Carloni, K. Bergman
{"title":"利用高性能存储器的CNN加速器的可扩展架构","authors":"Maarten Hattink, G. D. Guglielmo, L. Carloni, K. Bergman","doi":"10.1109/HPEC43674.2020.9286162","DOIUrl":null,"url":null,"abstract":"As FPGA-based accelerators become ubiquitous and more powerful, the demand for integration with High-Performance Memory (HPM) grows. Although HPMs offer a much greater bandwidth than standard DDR4 DRAM, they introduce new design challenges such as increased latency and higher bandwidth mismatch between memory and FPGA cores. This paper presents a scalable architecture for convolutional neural network accelerators conceived specifically to address these challenges and make full use of the memory's high bandwidth. The accelerator, which was designed using high-level synthesis, is highly configurable. The intrinsic parallelism of its architecture allows near-perfect scaling up to saturating the available memory bandwidth.","PeriodicalId":168544,"journal":{"name":"2020 IEEE High Performance Extreme Computing Conference (HPEC)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Scalable Architecture for CNN Accelerators Leveraging High-Performance Memories\",\"authors\":\"Maarten Hattink, G. D. Guglielmo, L. Carloni, K. Bergman\",\"doi\":\"10.1109/HPEC43674.2020.9286162\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As FPGA-based accelerators become ubiquitous and more powerful, the demand for integration with High-Performance Memory (HPM) grows. Although HPMs offer a much greater bandwidth than standard DDR4 DRAM, they introduce new design challenges such as increased latency and higher bandwidth mismatch between memory and FPGA cores. This paper presents a scalable architecture for convolutional neural network accelerators conceived specifically to address these challenges and make full use of the memory's high bandwidth. The accelerator, which was designed using high-level synthesis, is highly configurable. The intrinsic parallelism of its architecture allows near-perfect scaling up to saturating the available memory bandwidth.\",\"PeriodicalId\":168544,\"journal\":{\"name\":\"2020 IEEE High Performance Extreme Computing Conference (HPEC)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE High Performance Extreme Computing Conference (HPEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HPEC43674.2020.9286162\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE High Performance Extreme Computing Conference (HPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPEC43674.2020.9286162","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Scalable Architecture for CNN Accelerators Leveraging High-Performance Memories
As FPGA-based accelerators become ubiquitous and more powerful, the demand for integration with High-Performance Memory (HPM) grows. Although HPMs offer a much greater bandwidth than standard DDR4 DRAM, they introduce new design challenges such as increased latency and higher bandwidth mismatch between memory and FPGA cores. This paper presents a scalable architecture for convolutional neural network accelerators conceived specifically to address these challenges and make full use of the memory's high bandwidth. The accelerator, which was designed using high-level synthesis, is highly configurable. The intrinsic parallelism of its architecture allows near-perfect scaling up to saturating the available memory bandwidth.