{"title":"实时目标跟踪与平移倾斜变焦相机","authors":"Pankaj Kumar, A. Dick, Tan Soo Sheng","doi":"10.1109/DICTA.2009.84","DOIUrl":null,"url":null,"abstract":"We present an approach for real-time tracking of a non-rigid target with a moving pan-tilt-zoom (PTZ) camera. The tracking of the object and control of the camera is handled by one computer in real time. The main contribution of the paper is method for target representation, localisation and detection, which takes into account both foreground and background properties, and is more discriminative than the common colour histogram based back-projection. A Bayesian hypothesis test is used to decide whether each pixel is occupied by the target or not. We show that this target representation is suitable for use with a Continuously Adaptive Mean Shift (CAMSHIFT) tracker. Experiments show that this leads to a tracking system that is efficient and accurate enough to guide a PTZ camera to follow a moving target in real time, despite the presence of background clutter and partial occlusion.","PeriodicalId":277395,"journal":{"name":"2009 Digital Image Computing: Techniques and Applications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":"{\"title\":\"Real Time Target Tracking with Pan Tilt Zoom Camera\",\"authors\":\"Pankaj Kumar, A. Dick, Tan Soo Sheng\",\"doi\":\"10.1109/DICTA.2009.84\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present an approach for real-time tracking of a non-rigid target with a moving pan-tilt-zoom (PTZ) camera. The tracking of the object and control of the camera is handled by one computer in real time. The main contribution of the paper is method for target representation, localisation and detection, which takes into account both foreground and background properties, and is more discriminative than the common colour histogram based back-projection. A Bayesian hypothesis test is used to decide whether each pixel is occupied by the target or not. We show that this target representation is suitable for use with a Continuously Adaptive Mean Shift (CAMSHIFT) tracker. Experiments show that this leads to a tracking system that is efficient and accurate enough to guide a PTZ camera to follow a moving target in real time, despite the presence of background clutter and partial occlusion.\",\"PeriodicalId\":277395,\"journal\":{\"name\":\"2009 Digital Image Computing: Techniques and Applications\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Digital Image Computing: Techniques and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DICTA.2009.84\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Digital Image Computing: Techniques and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA.2009.84","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Real Time Target Tracking with Pan Tilt Zoom Camera
We present an approach for real-time tracking of a non-rigid target with a moving pan-tilt-zoom (PTZ) camera. The tracking of the object and control of the camera is handled by one computer in real time. The main contribution of the paper is method for target representation, localisation and detection, which takes into account both foreground and background properties, and is more discriminative than the common colour histogram based back-projection. A Bayesian hypothesis test is used to decide whether each pixel is occupied by the target or not. We show that this target representation is suitable for use with a Continuously Adaptive Mean Shift (CAMSHIFT) tracker. Experiments show that this leads to a tracking system that is efficient and accurate enough to guide a PTZ camera to follow a moving target in real time, despite the presence of background clutter and partial occlusion.