基于滑动离散傅里叶变换和机器学习技术的脑电图癫痫发作自动检测新方法

A. S. Abdulhussien, A. Abdulsadda, Ali Al Farawn
{"title":"基于滑动离散傅里叶变换和机器学习技术的脑电图癫痫发作自动检测新方法","authors":"A. S. Abdulhussien, A. Abdulsadda, Ali Al Farawn","doi":"10.1109/ACCC54619.2021.00011","DOIUrl":null,"url":null,"abstract":"Automatic seizure detection is important for fast detection because the expert denoted and searching for seizures in the long signal takes time. The most common way to detect seizures automatically is to use an electroencephalogram (EEG). In this study, sliding discrete Fourier transform (SDFT) is applied for conversion to a frequency domain by using a simple IIR structure with other fourteen features extracted from the EEG database of Bonn University. These fifteen features used as input to classifier for seizure detection, a two-classifier feedforward neural network (FFNN) and an adaptive network-based fuzzy inference system (ANFIS) used. The results appear that the highest accuracy is 99.74% with FFNN and 99.67 ANFIS. Also, when measuring the feature importance in classification for each feature extraction method and compare the results, the SDFT has more importance than other features used in this study for the classification.","PeriodicalId":215546,"journal":{"name":"2021 2nd Asia Conference on Computers and Communications (ACCC)","volume":"112 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New Automatic EEG Epileptic Seizure Detection Approach Using Sliding Discrete Fourier Transform and Machine Learning Techniques\",\"authors\":\"A. S. Abdulhussien, A. Abdulsadda, Ali Al Farawn\",\"doi\":\"10.1109/ACCC54619.2021.00011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automatic seizure detection is important for fast detection because the expert denoted and searching for seizures in the long signal takes time. The most common way to detect seizures automatically is to use an electroencephalogram (EEG). In this study, sliding discrete Fourier transform (SDFT) is applied for conversion to a frequency domain by using a simple IIR structure with other fourteen features extracted from the EEG database of Bonn University. These fifteen features used as input to classifier for seizure detection, a two-classifier feedforward neural network (FFNN) and an adaptive network-based fuzzy inference system (ANFIS) used. The results appear that the highest accuracy is 99.74% with FFNN and 99.67 ANFIS. Also, when measuring the feature importance in classification for each feature extraction method and compare the results, the SDFT has more importance than other features used in this study for the classification.\",\"PeriodicalId\":215546,\"journal\":{\"name\":\"2021 2nd Asia Conference on Computers and Communications (ACCC)\",\"volume\":\"112 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 2nd Asia Conference on Computers and Communications (ACCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACCC54619.2021.00011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 2nd Asia Conference on Computers and Communications (ACCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACCC54619.2021.00011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

自动检测对于快速检测至关重要,因为专家在长信号中表示和搜索癫痫发作需要时间。自动检测癫痫发作最常见的方法是使用脑电图(EEG)。在本研究中,使用从波恩大学EEG数据库中提取的简单IIR结构和其他14个特征,将滑动离散傅里叶变换(SDFT)应用于频域转换。将这15个特征作为癫痫检测分类器的输入,使用双分类器前馈神经网络(FFNN)和基于自适应网络的模糊推理系统(ANFIS)。结果表明,FFNN和ANFIS的准确率最高,分别为99.74%和99.67。此外,在衡量每种特征提取方法在分类中的特征重要性并比较结果时,SDFT对分类的重要性高于本研究中使用的其他特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New Automatic EEG Epileptic Seizure Detection Approach Using Sliding Discrete Fourier Transform and Machine Learning Techniques
Automatic seizure detection is important for fast detection because the expert denoted and searching for seizures in the long signal takes time. The most common way to detect seizures automatically is to use an electroencephalogram (EEG). In this study, sliding discrete Fourier transform (SDFT) is applied for conversion to a frequency domain by using a simple IIR structure with other fourteen features extracted from the EEG database of Bonn University. These fifteen features used as input to classifier for seizure detection, a two-classifier feedforward neural network (FFNN) and an adaptive network-based fuzzy inference system (ANFIS) used. The results appear that the highest accuracy is 99.74% with FFNN and 99.67 ANFIS. Also, when measuring the feature importance in classification for each feature extraction method and compare the results, the SDFT has more importance than other features used in this study for the classification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信