{"title":"为基于模型的测试生成跟踪集","authors":"B. Lindström, P. Pettersson, A. Offutt","doi":"10.1109/ISSRE.2007.15","DOIUrl":null,"url":null,"abstract":"Model-checkers are powerful tools that can find individual traces through models to satisfy desired properties. These traces provide solutions to a number of problems. Instead of individual traces, software testing needs sets of traces that satisfy coverage criteria. Finding a trace set in a large model is difficult because model checkers generate single traces and use a lot of memory. Space and time requirements of modelchecking algorithms grow exponentially with respect to the number of variables and parallel automata of the model being analyzed. We present a method that generates a set of traces by iteratively invoking a model checker. The method mitigates the memory consumption problem by dynamically building partitions along the traces. This method was applied to a testability case study, and it generated the complete trace set, while ordinary model-checking could only generate 26%.","PeriodicalId":193805,"journal":{"name":"The 18th IEEE International Symposium on Software Reliability (ISSRE '07)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Generating Trace-Sets for Model-based Testing\",\"authors\":\"B. Lindström, P. Pettersson, A. Offutt\",\"doi\":\"10.1109/ISSRE.2007.15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Model-checkers are powerful tools that can find individual traces through models to satisfy desired properties. These traces provide solutions to a number of problems. Instead of individual traces, software testing needs sets of traces that satisfy coverage criteria. Finding a trace set in a large model is difficult because model checkers generate single traces and use a lot of memory. Space and time requirements of modelchecking algorithms grow exponentially with respect to the number of variables and parallel automata of the model being analyzed. We present a method that generates a set of traces by iteratively invoking a model checker. The method mitigates the memory consumption problem by dynamically building partitions along the traces. This method was applied to a testability case study, and it generated the complete trace set, while ordinary model-checking could only generate 26%.\",\"PeriodicalId\":193805,\"journal\":{\"name\":\"The 18th IEEE International Symposium on Software Reliability (ISSRE '07)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 18th IEEE International Symposium on Software Reliability (ISSRE '07)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSRE.2007.15\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 18th IEEE International Symposium on Software Reliability (ISSRE '07)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSRE.2007.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Model-checkers are powerful tools that can find individual traces through models to satisfy desired properties. These traces provide solutions to a number of problems. Instead of individual traces, software testing needs sets of traces that satisfy coverage criteria. Finding a trace set in a large model is difficult because model checkers generate single traces and use a lot of memory. Space and time requirements of modelchecking algorithms grow exponentially with respect to the number of variables and parallel automata of the model being analyzed. We present a method that generates a set of traces by iteratively invoking a model checker. The method mitigates the memory consumption problem by dynamically building partitions along the traces. This method was applied to a testability case study, and it generated the complete trace set, while ordinary model-checking could only generate 26%.