基于粒子群的磁悬浮系统扩展状态观测器的实验设计与验证

A. Humaidi
{"title":"基于粒子群的磁悬浮系统扩展状态观测器的实验设计与验证","authors":"A. Humaidi","doi":"10.2174/1874129001812010110","DOIUrl":null,"url":null,"abstract":"\n \n This work presents analysis, design and implementation of two schemes of Extended State Observer (ESO) to estimate the position, velocity and unmeasurable states for magnetic levitation systems, Linear ESO (LESO) and Nonlinear ESO (NESO). The multiplicity of design parameters for both LESO and NESO made it difficult to find appropriate setting of these parameters such that to reach satisfactory performance of observation process. \n \n \n \n Particle Swarm Optimization (PSO) technique is used to improve performance of observation process by finding optimal tuned parameters of observer design parameter subjected to specified performance index. Theoretical results of both observers are firstly implemented in the environment of MATLAB/SIMULINK. Then, experimental state estimation of observers is set up based on feedback instrument (33-942S) to verify the simulated results.\n \n \n \n Root Mean Square (RMS) of estimation error has been used as an indicator to assess the performance of observers. The simulated and practical results showed that LESO could give better estimation performance than NESO. \n\n","PeriodicalId":370221,"journal":{"name":"The Open Electrical & Electronic Engineering Journal","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Experimental Design and Verification of Extended State Observers for Magnetic Levitation System Based on PSO\",\"authors\":\"A. Humaidi\",\"doi\":\"10.2174/1874129001812010110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n \\n This work presents analysis, design and implementation of two schemes of Extended State Observer (ESO) to estimate the position, velocity and unmeasurable states for magnetic levitation systems, Linear ESO (LESO) and Nonlinear ESO (NESO). The multiplicity of design parameters for both LESO and NESO made it difficult to find appropriate setting of these parameters such that to reach satisfactory performance of observation process. \\n \\n \\n \\n Particle Swarm Optimization (PSO) technique is used to improve performance of observation process by finding optimal tuned parameters of observer design parameter subjected to specified performance index. Theoretical results of both observers are firstly implemented in the environment of MATLAB/SIMULINK. Then, experimental state estimation of observers is set up based on feedback instrument (33-942S) to verify the simulated results.\\n \\n \\n \\n Root Mean Square (RMS) of estimation error has been used as an indicator to assess the performance of observers. The simulated and practical results showed that LESO could give better estimation performance than NESO. \\n\\n\",\"PeriodicalId\":370221,\"journal\":{\"name\":\"The Open Electrical & Electronic Engineering Journal\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Open Electrical & Electronic Engineering Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/1874129001812010110\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Open Electrical & Electronic Engineering Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/1874129001812010110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文分析、设计和实现了两种用于磁悬浮系统位置、速度和不可测状态估计的扩展状态观测器(ESO)方案:线性ESO (LESO)和非线性ESO (NESO)。由于LESO和NESO设计参数的多样性,很难找到合适的参数设置以达到令人满意的观测过程性能。采用粒子群优化(PSO)技术,在给定的性能指标下,对观测器设计参数求最优调优参数,从而提高观测过程的性能。首先在MATLAB/SIMULINK环境下实现了两种观测器的理论结果。然后,基于反馈仪器(33-942S)建立观测器的实验状态估计,对仿真结果进行验证。用估计误差的均方根(RMS)作为评价观测器性能的指标。仿真和实际结果表明,LESO比NESO具有更好的估计性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Experimental Design and Verification of Extended State Observers for Magnetic Levitation System Based on PSO
This work presents analysis, design and implementation of two schemes of Extended State Observer (ESO) to estimate the position, velocity and unmeasurable states for magnetic levitation systems, Linear ESO (LESO) and Nonlinear ESO (NESO). The multiplicity of design parameters for both LESO and NESO made it difficult to find appropriate setting of these parameters such that to reach satisfactory performance of observation process. Particle Swarm Optimization (PSO) technique is used to improve performance of observation process by finding optimal tuned parameters of observer design parameter subjected to specified performance index. Theoretical results of both observers are firstly implemented in the environment of MATLAB/SIMULINK. Then, experimental state estimation of observers is set up based on feedback instrument (33-942S) to verify the simulated results. Root Mean Square (RMS) of estimation error has been used as an indicator to assess the performance of observers. The simulated and practical results showed that LESO could give better estimation performance than NESO.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信