粘质沙雷氏菌DRY6对十二烷基硫酸钠(SDS)的生物降解

A. Othman, M. Yusof, M. Shukor
{"title":"粘质沙雷氏菌DRY6对十二烷基硫酸钠(SDS)的生物降解","authors":"A. Othman, M. Yusof, M. Shukor","doi":"10.54987/bstr.v7i2.486","DOIUrl":null,"url":null,"abstract":"A bacterium capable of degrading sodium dodecyl sulphate (SDS) is characterized. Previously, the bacterium has been shown to have the capability to reduce molybdenum to molybdenum blue. In this report, we showed that almost complete degradation of SDS was observed in 6 to 10 days when the bacterium was grown on medium supplemented with SDS ranging from 0.5 to 1 g L-1 while higher concentrations showed partial degradation with no degradation was observed at concentrations higher than 2.5 g L-1. Other detergents were also tested including Tergitol NP9, Tergitol 15S9, Witconol 2301 (methyl oleate), sodium dodecylbenzene sulfonate (SDBS), benzethonium chloride and benzalkonium chloride. However, growth can only be seen on the anionic SDBS. We also showed that the presence of metal ions such as silver, copper, cadmium, chromium, lead and mercury inhibits the ability of the bacterium to degrade SDS by 50%. Growth on SDS could not support molybdenum-reduction in this bacterium. Growth kinetic studies showed that the growth rate could be modelled using Haldane substrate inhibition kinetics with the maximum growth rate, µmax, was 0.13 h-1, while the saturation constant or half velocity constant Ks and inhibition constant Ki, were 0.707 and 11.303 g L-1 SDS, respectively.","PeriodicalId":436607,"journal":{"name":"Bioremediation Science and Technology Research","volume":"139 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Biodegradation of Sodium Dodecyl Sulphate (SDS) by Serratia marcescens strain DRY6\",\"authors\":\"A. Othman, M. Yusof, M. Shukor\",\"doi\":\"10.54987/bstr.v7i2.486\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A bacterium capable of degrading sodium dodecyl sulphate (SDS) is characterized. Previously, the bacterium has been shown to have the capability to reduce molybdenum to molybdenum blue. In this report, we showed that almost complete degradation of SDS was observed in 6 to 10 days when the bacterium was grown on medium supplemented with SDS ranging from 0.5 to 1 g L-1 while higher concentrations showed partial degradation with no degradation was observed at concentrations higher than 2.5 g L-1. Other detergents were also tested including Tergitol NP9, Tergitol 15S9, Witconol 2301 (methyl oleate), sodium dodecylbenzene sulfonate (SDBS), benzethonium chloride and benzalkonium chloride. However, growth can only be seen on the anionic SDBS. We also showed that the presence of metal ions such as silver, copper, cadmium, chromium, lead and mercury inhibits the ability of the bacterium to degrade SDS by 50%. Growth on SDS could not support molybdenum-reduction in this bacterium. Growth kinetic studies showed that the growth rate could be modelled using Haldane substrate inhibition kinetics with the maximum growth rate, µmax, was 0.13 h-1, while the saturation constant or half velocity constant Ks and inhibition constant Ki, were 0.707 and 11.303 g L-1 SDS, respectively.\",\"PeriodicalId\":436607,\"journal\":{\"name\":\"Bioremediation Science and Technology Research\",\"volume\":\"139 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioremediation Science and Technology Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54987/bstr.v7i2.486\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioremediation Science and Technology Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54987/bstr.v7i2.486","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

描述了一种能够降解十二烷基硫酸钠(SDS)的细菌。此前,这种细菌已被证明具有将钼还原为钼蓝的能力。在本报告中,我们发现,当培养基中添加的SDS为0.5 ~ 1 g L-1时,细菌在6 ~ 10天内几乎完全降解SDS,而浓度较高时,细菌部分降解,浓度高于2.5 g L-1时,细菌没有降解。其他洗涤剂还包括Tergitol NP9、Tergitol 15S9、Witconol 2301(油酸甲酯)、十二烷基苯磺酸钠(SDBS)、苯并氯铵和苯并氯铵。然而,生长只能在阴离子的SDBS上看到。我们还发现,银、铜、镉、铬、铅和汞等金属离子的存在会抑制细菌降解SDS的能力,使其降低50%。SDS上的生长不支持这种细菌的钼还原。生长动力学研究表明,生长速率可以用Haldane底物抑制动力学来模拟,最大生长速率µmax为0.13 h-1,饱和常数或半速度常数Ks和抑制常数Ki分别为0.707和11.303 g L-1 SDS。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Biodegradation of Sodium Dodecyl Sulphate (SDS) by Serratia marcescens strain DRY6
A bacterium capable of degrading sodium dodecyl sulphate (SDS) is characterized. Previously, the bacterium has been shown to have the capability to reduce molybdenum to molybdenum blue. In this report, we showed that almost complete degradation of SDS was observed in 6 to 10 days when the bacterium was grown on medium supplemented with SDS ranging from 0.5 to 1 g L-1 while higher concentrations showed partial degradation with no degradation was observed at concentrations higher than 2.5 g L-1. Other detergents were also tested including Tergitol NP9, Tergitol 15S9, Witconol 2301 (methyl oleate), sodium dodecylbenzene sulfonate (SDBS), benzethonium chloride and benzalkonium chloride. However, growth can only be seen on the anionic SDBS. We also showed that the presence of metal ions such as silver, copper, cadmium, chromium, lead and mercury inhibits the ability of the bacterium to degrade SDS by 50%. Growth on SDS could not support molybdenum-reduction in this bacterium. Growth kinetic studies showed that the growth rate could be modelled using Haldane substrate inhibition kinetics with the maximum growth rate, µmax, was 0.13 h-1, while the saturation constant or half velocity constant Ks and inhibition constant Ki, were 0.707 and 11.303 g L-1 SDS, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信