Keiller Nogueira, C. César, P. H. T. Gama, Gabriel L. S. Machado, J. A. D. Santos
{"title":"利用卫星图像检测大型基础设施工程桥梁的工具","authors":"Keiller Nogueira, C. César, P. H. T. Gama, Gabriel L. S. Machado, J. A. D. Santos","doi":"10.1109/WVC.2019.8876942","DOIUrl":null,"url":null,"abstract":"The identification of bridges in major infrastructure works is crucial to provide information about the status of these constructions and support possible decision-making processes. Typically, this identification is performed by human agents that must detect the bridges into large-scale datasets, analyzing image by image, a time-consuming task. In this paper, we propose a novel tool to perform bridge detection and identification in large-scale remote sensing datasets. This tool implements a deep learning-based algorithm, the Faster R-CNN (Regions with CNN features), a technique that is the current state-of-the-art for many object detection and identification applications. Since deep training usually requires a lot of data, we also created a bridge image dataset, composed of remote sensing images from around the globe. The proposed tool was encapsulated into an ArcGIS plugin in order to facilitate its use by non-programmer users.","PeriodicalId":144641,"journal":{"name":"2019 XV Workshop de Visão Computacional (WVC)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A Tool for Bridge Detection in Major Infrastructure Works Using Satellite Images\",\"authors\":\"Keiller Nogueira, C. César, P. H. T. Gama, Gabriel L. S. Machado, J. A. D. Santos\",\"doi\":\"10.1109/WVC.2019.8876942\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The identification of bridges in major infrastructure works is crucial to provide information about the status of these constructions and support possible decision-making processes. Typically, this identification is performed by human agents that must detect the bridges into large-scale datasets, analyzing image by image, a time-consuming task. In this paper, we propose a novel tool to perform bridge detection and identification in large-scale remote sensing datasets. This tool implements a deep learning-based algorithm, the Faster R-CNN (Regions with CNN features), a technique that is the current state-of-the-art for many object detection and identification applications. Since deep training usually requires a lot of data, we also created a bridge image dataset, composed of remote sensing images from around the globe. The proposed tool was encapsulated into an ArcGIS plugin in order to facilitate its use by non-programmer users.\",\"PeriodicalId\":144641,\"journal\":{\"name\":\"2019 XV Workshop de Visão Computacional (WVC)\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 XV Workshop de Visão Computacional (WVC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WVC.2019.8876942\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 XV Workshop de Visão Computacional (WVC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WVC.2019.8876942","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Tool for Bridge Detection in Major Infrastructure Works Using Satellite Images
The identification of bridges in major infrastructure works is crucial to provide information about the status of these constructions and support possible decision-making processes. Typically, this identification is performed by human agents that must detect the bridges into large-scale datasets, analyzing image by image, a time-consuming task. In this paper, we propose a novel tool to perform bridge detection and identification in large-scale remote sensing datasets. This tool implements a deep learning-based algorithm, the Faster R-CNN (Regions with CNN features), a technique that is the current state-of-the-art for many object detection and identification applications. Since deep training usually requires a lot of data, we also created a bridge image dataset, composed of remote sensing images from around the globe. The proposed tool was encapsulated into an ArcGIS plugin in order to facilitate its use by non-programmer users.