多半定约束凸规划的随机逼近方法

L. Pang, Ming-Kun Zhang, X. Xiao
{"title":"多半定约束凸规划的随机逼近方法","authors":"L. Pang, Ming-Kun Zhang, X. Xiao","doi":"10.1080/10556788.2022.2091563","DOIUrl":null,"url":null,"abstract":"In this paper, we consider a type of semidefinite programming problem (MSDP), which involves many (not necessarily finite) of semidefinite constraints. MSDP can be established in a wide range of applications, including covering ellipsoids problem and truss topology design. We propose a random method based on a stochastic approximation technique for solving MSDP, without calculating and storing the multiplier. Under mild conditions, we establish the almost sure convergence and expected convergence rates of the proposed method. A variety of simulation experiments are carried out to support our theoretical results.","PeriodicalId":124811,"journal":{"name":"Optimization Methods and Software","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A stochastic approximation method for convex programming with many semidefinite constraints\",\"authors\":\"L. Pang, Ming-Kun Zhang, X. Xiao\",\"doi\":\"10.1080/10556788.2022.2091563\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we consider a type of semidefinite programming problem (MSDP), which involves many (not necessarily finite) of semidefinite constraints. MSDP can be established in a wide range of applications, including covering ellipsoids problem and truss topology design. We propose a random method based on a stochastic approximation technique for solving MSDP, without calculating and storing the multiplier. Under mild conditions, we establish the almost sure convergence and expected convergence rates of the proposed method. A variety of simulation experiments are carried out to support our theoretical results.\",\"PeriodicalId\":124811,\"journal\":{\"name\":\"Optimization Methods and Software\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optimization Methods and Software\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/10556788.2022.2091563\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optimization Methods and Software","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10556788.2022.2091563","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文考虑一类涉及许多(不一定是有限的)半确定约束的半确定规划问题。MSDP可以建立广泛的应用,包括涵盖椭球问题和桁架拓扑设计。我们提出了一种基于随机逼近技术的随机方法来求解MSDP,而不需要计算和存储乘数。在温和条件下,我们建立了该方法的几乎肯定收敛性和期望收敛率。进行了各种模拟实验来支持我们的理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A stochastic approximation method for convex programming with many semidefinite constraints
In this paper, we consider a type of semidefinite programming problem (MSDP), which involves many (not necessarily finite) of semidefinite constraints. MSDP can be established in a wide range of applications, including covering ellipsoids problem and truss topology design. We propose a random method based on a stochastic approximation technique for solving MSDP, without calculating and storing the multiplier. Under mild conditions, we establish the almost sure convergence and expected convergence rates of the proposed method. A variety of simulation experiments are carried out to support our theoretical results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信