基于反向传播神经网络的无损图像压缩预测

G. Hong, G. Hall, T. Terrell
{"title":"基于反向传播神经网络的无损图像压缩预测","authors":"G. Hong, G. Hall, T. Terrell","doi":"10.1109/ICSIGP.1996.566266","DOIUrl":null,"url":null,"abstract":"This paper describes a prediction process produced by a back-propagation neural network for lossless image compression. The predictor is designed by supervised training of a back-propagation neural network using actual image pixels, i.e. using a typical sequence of pixel values. The significance of this approach lies in the fact that it can exploit high-order statistics and the nonlinear function existing between pixel values in an image. Results are presented for the prediction error image in terms of mean-square error and first-order entropy, and a discussion on the performance of the algorithm is given.","PeriodicalId":385432,"journal":{"name":"Proceedings of Third International Conference on Signal Processing (ICSP'96)","volume":"146 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Prediction by back-propagation neural network for lossless image compression\",\"authors\":\"G. Hong, G. Hall, T. Terrell\",\"doi\":\"10.1109/ICSIGP.1996.566266\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes a prediction process produced by a back-propagation neural network for lossless image compression. The predictor is designed by supervised training of a back-propagation neural network using actual image pixels, i.e. using a typical sequence of pixel values. The significance of this approach lies in the fact that it can exploit high-order statistics and the nonlinear function existing between pixel values in an image. Results are presented for the prediction error image in terms of mean-square error and first-order entropy, and a discussion on the performance of the algorithm is given.\",\"PeriodicalId\":385432,\"journal\":{\"name\":\"Proceedings of Third International Conference on Signal Processing (ICSP'96)\",\"volume\":\"146 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of Third International Conference on Signal Processing (ICSP'96)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSIGP.1996.566266\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Third International Conference on Signal Processing (ICSP'96)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSIGP.1996.566266","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文描述了一种基于反向传播神经网络的无损图像压缩预测过程。预测器是通过使用实际图像像素的反向传播神经网络的监督训练来设计的,即使用典型的像素值序列。该方法的意义在于利用了图像中像素值之间存在的高阶统计量和非线性函数。从均方误差和一阶熵的角度给出了预测误差图像的结果,并对算法的性能进行了讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prediction by back-propagation neural network for lossless image compression
This paper describes a prediction process produced by a back-propagation neural network for lossless image compression. The predictor is designed by supervised training of a back-propagation neural network using actual image pixels, i.e. using a typical sequence of pixel values. The significance of this approach lies in the fact that it can exploit high-order statistics and the nonlinear function existing between pixel values in an image. Results are presented for the prediction error image in terms of mean-square error and first-order entropy, and a discussion on the performance of the algorithm is given.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信