走向更自然的人工语言

Mark Hopkins
{"title":"走向更自然的人工语言","authors":"Mark Hopkins","doi":"10.18653/v1/2022.conll-1.7","DOIUrl":null,"url":null,"abstract":"A number of papers have recently argued in favor of using artificially generated languages to investigate the inductive biases of linguistic models, or to develop models for low-resource languages with underrepresented typologies. But the promise of artificial languages comes with a caveat: if these artificial languages are not sufficiently reflective of natural language, then using them as a proxy may lead to inaccurate conclusions. In this paper, we take a step towards increasing the realism of artificial language by introducing a variant of indexed grammars that draw their weights from hierarchical Pitman-Yor processes. We show that this framework generates languages that emulate the statistics of natural language corpora better than the current approach of directly formulating weighted context-free grammars.","PeriodicalId":221345,"journal":{"name":"Proceedings of the 26th Conference on Computational Natural Language Learning (CoNLL)","volume":"85 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards More Natural Artificial Languages\",\"authors\":\"Mark Hopkins\",\"doi\":\"10.18653/v1/2022.conll-1.7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A number of papers have recently argued in favor of using artificially generated languages to investigate the inductive biases of linguistic models, or to develop models for low-resource languages with underrepresented typologies. But the promise of artificial languages comes with a caveat: if these artificial languages are not sufficiently reflective of natural language, then using them as a proxy may lead to inaccurate conclusions. In this paper, we take a step towards increasing the realism of artificial language by introducing a variant of indexed grammars that draw their weights from hierarchical Pitman-Yor processes. We show that this framework generates languages that emulate the statistics of natural language corpora better than the current approach of directly formulating weighted context-free grammars.\",\"PeriodicalId\":221345,\"journal\":{\"name\":\"Proceedings of the 26th Conference on Computational Natural Language Learning (CoNLL)\",\"volume\":\"85 2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 26th Conference on Computational Natural Language Learning (CoNLL)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/2022.conll-1.7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 26th Conference on Computational Natural Language Learning (CoNLL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2022.conll-1.7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

最近有许多论文主张使用人工生成的语言来研究语言模型的归纳偏差,或者为具有未充分代表的类型学的低资源语言开发模型。但人工语言的前景也有一个警告:如果这些人工语言不能充分反映自然语言,那么用它们作为代理可能会导致不准确的结论。在本文中,我们通过引入索引语法的一种变体,从分层Pitman-Yor过程中提取权重,朝着增加人工语言的现实性迈出了一步。我们表明,该框架生成的语言比当前直接制定加权上下文无关语法的方法更好地模拟自然语言语料库的统计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards More Natural Artificial Languages
A number of papers have recently argued in favor of using artificially generated languages to investigate the inductive biases of linguistic models, or to develop models for low-resource languages with underrepresented typologies. But the promise of artificial languages comes with a caveat: if these artificial languages are not sufficiently reflective of natural language, then using them as a proxy may lead to inaccurate conclusions. In this paper, we take a step towards increasing the realism of artificial language by introducing a variant of indexed grammars that draw their weights from hierarchical Pitman-Yor processes. We show that this framework generates languages that emulate the statistics of natural language corpora better than the current approach of directly formulating weighted context-free grammars.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信