{"title":"真实方向的奇怪的初级类似物","authors":"Jeremy Hahn, Andrew Senger, D. Wilson","doi":"10.2140/gt.2023.27.87","DOIUrl":null,"url":null,"abstract":"We define, in $C_p$-equivariant homotopy theory for $p>2$, a notion of $\\mu_p$-orientation analogous to a $C_2$-equivariant Real orientation. The definition hinges on a $C_p$-space $\\mathbb{CP}^{\\infty}_{\\mu_p}$, which we prove to be homologically even in a sense generalizing recent $C_2$-equivariant work on conjugation spaces. \nWe prove that the height $p-1$ Morava $E$-theory is $\\mu_p$-oriented and that $\\mathrm{tmf}(2)$ is $\\mu_3$-oriented. We explain how a single equivariant map $v_1^{\\mu_p}:S^{2\\rho} \\to \\Sigma^{\\infty} \\mathbb{CP}^{\\infty}_{\\mu_p}$ completely generates the homotopy of $E_{p-1}$ and $\\mathrm{tmf}(2)$, expressing a height-shifting phenomenon pervasive in equivariant chromatic homotopy theory.","PeriodicalId":254292,"journal":{"name":"Geometry & Topology","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Odd primary analogs of real orientations\",\"authors\":\"Jeremy Hahn, Andrew Senger, D. Wilson\",\"doi\":\"10.2140/gt.2023.27.87\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We define, in $C_p$-equivariant homotopy theory for $p>2$, a notion of $\\\\mu_p$-orientation analogous to a $C_2$-equivariant Real orientation. The definition hinges on a $C_p$-space $\\\\mathbb{CP}^{\\\\infty}_{\\\\mu_p}$, which we prove to be homologically even in a sense generalizing recent $C_2$-equivariant work on conjugation spaces. \\nWe prove that the height $p-1$ Morava $E$-theory is $\\\\mu_p$-oriented and that $\\\\mathrm{tmf}(2)$ is $\\\\mu_3$-oriented. We explain how a single equivariant map $v_1^{\\\\mu_p}:S^{2\\\\rho} \\\\to \\\\Sigma^{\\\\infty} \\\\mathbb{CP}^{\\\\infty}_{\\\\mu_p}$ completely generates the homotopy of $E_{p-1}$ and $\\\\mathrm{tmf}(2)$, expressing a height-shifting phenomenon pervasive in equivariant chromatic homotopy theory.\",\"PeriodicalId\":254292,\"journal\":{\"name\":\"Geometry & Topology\",\"volume\":\"63 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geometry & Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/gt.2023.27.87\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometry & Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/gt.2023.27.87","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We define, in $C_p$-equivariant homotopy theory for $p>2$, a notion of $\mu_p$-orientation analogous to a $C_2$-equivariant Real orientation. The definition hinges on a $C_p$-space $\mathbb{CP}^{\infty}_{\mu_p}$, which we prove to be homologically even in a sense generalizing recent $C_2$-equivariant work on conjugation spaces.
We prove that the height $p-1$ Morava $E$-theory is $\mu_p$-oriented and that $\mathrm{tmf}(2)$ is $\mu_3$-oriented. We explain how a single equivariant map $v_1^{\mu_p}:S^{2\rho} \to \Sigma^{\infty} \mathbb{CP}^{\infty}_{\mu_p}$ completely generates the homotopy of $E_{p-1}$ and $\mathrm{tmf}(2)$, expressing a height-shifting phenomenon pervasive in equivariant chromatic homotopy theory.