Yang Chao, Tao Shenggui, Xie Weida, Zhuang Lingyun
{"title":"上海地铁1号线静态辅助系统新发展研究","authors":"Yang Chao, Tao Shenggui, Xie Weida, Zhuang Lingyun","doi":"10.1109/IPEMC.2009.5157607","DOIUrl":null,"url":null,"abstract":"With the progress of science and technology, a new generation of IGBT/IGCT power electronics module with good performance is developing rapidly with successful commercialization and serialization, gradually replacing the old power electronic devices in the range of medium-capacity. Therefore, the same type of HVIGBT should be adopted substitute for original GTO and corresponding domestic development is very necessary. Novel development work of GTO auxiliary system replacing by HVIGBT choppers and inverters have been carried out and completed in 2006. The new system is in reliable operation on line1 vehicles for more than 2 years. After analyzing the original GTO Auxiliary System, simulation on novel HVIGBT chopper for the system is given in this paper. Compared with the simulation results, experimental waveform based on the newly developed HVIGBT chopper which is composed of 800A /3300V HVIGBT module is consistent on the whole. The rating capacity of the HVIGBT chopper is 80kVA and the instantaneous overloaded capacity is 120kVA.Two years' practice has proved that the novel development of static auxiliary system, which has the advantages of small loss, high efficiency and high reliability, is an effective measure for ensuring Shanghai Line 1 vehicles continued reliable operation.","PeriodicalId":375971,"journal":{"name":"2009 IEEE 6th International Power Electronics and Motion Control Conference","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Research on novel development of static auxiliary system of Shanghai Metro Line 1\",\"authors\":\"Yang Chao, Tao Shenggui, Xie Weida, Zhuang Lingyun\",\"doi\":\"10.1109/IPEMC.2009.5157607\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the progress of science and technology, a new generation of IGBT/IGCT power electronics module with good performance is developing rapidly with successful commercialization and serialization, gradually replacing the old power electronic devices in the range of medium-capacity. Therefore, the same type of HVIGBT should be adopted substitute for original GTO and corresponding domestic development is very necessary. Novel development work of GTO auxiliary system replacing by HVIGBT choppers and inverters have been carried out and completed in 2006. The new system is in reliable operation on line1 vehicles for more than 2 years. After analyzing the original GTO Auxiliary System, simulation on novel HVIGBT chopper for the system is given in this paper. Compared with the simulation results, experimental waveform based on the newly developed HVIGBT chopper which is composed of 800A /3300V HVIGBT module is consistent on the whole. The rating capacity of the HVIGBT chopper is 80kVA and the instantaneous overloaded capacity is 120kVA.Two years' practice has proved that the novel development of static auxiliary system, which has the advantages of small loss, high efficiency and high reliability, is an effective measure for ensuring Shanghai Line 1 vehicles continued reliable operation.\",\"PeriodicalId\":375971,\"journal\":{\"name\":\"2009 IEEE 6th International Power Electronics and Motion Control Conference\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE 6th International Power Electronics and Motion Control Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPEMC.2009.5157607\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE 6th International Power Electronics and Motion Control Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPEMC.2009.5157607","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Research on novel development of static auxiliary system of Shanghai Metro Line 1
With the progress of science and technology, a new generation of IGBT/IGCT power electronics module with good performance is developing rapidly with successful commercialization and serialization, gradually replacing the old power electronic devices in the range of medium-capacity. Therefore, the same type of HVIGBT should be adopted substitute for original GTO and corresponding domestic development is very necessary. Novel development work of GTO auxiliary system replacing by HVIGBT choppers and inverters have been carried out and completed in 2006. The new system is in reliable operation on line1 vehicles for more than 2 years. After analyzing the original GTO Auxiliary System, simulation on novel HVIGBT chopper for the system is given in this paper. Compared with the simulation results, experimental waveform based on the newly developed HVIGBT chopper which is composed of 800A /3300V HVIGBT module is consistent on the whole. The rating capacity of the HVIGBT chopper is 80kVA and the instantaneous overloaded capacity is 120kVA.Two years' practice has proved that the novel development of static auxiliary system, which has the advantages of small loss, high efficiency and high reliability, is an effective measure for ensuring Shanghai Line 1 vehicles continued reliable operation.