从辅助数据中挖掘稀疏标记模式的社会图像标记

Jie Lin, Junsong Yuan, Ling-yu Duan, Siwei Luo, Wen Gao
{"title":"从辅助数据中挖掘稀疏标记模式的社会图像标记","authors":"Jie Lin, Junsong Yuan, Ling-yu Duan, Siwei Luo, Wen Gao","doi":"10.1109/ICME.2012.170","DOIUrl":null,"url":null,"abstract":"User-given tags associated with social images from photosharing websites (e.g., Flickr) are valuable auxiliary resources for the image tagging task. However, social images often suffer from noisy and incomplete tags, heavily degrading the effectiveness of previous image tagging approaches. To alleviate the problem, we introduce a Sparse Tag Patterns (STP) model to discover noiseless and complementary cooccurrence tag patterns from large scale user contributed tags among auxiliary web data. To fulfill the compactness and discriminability, we formulate the STP model as a problem of minimizing quadratic loss function regularized by bi-layer ℓ1 norm. We treat the learned STP as a universal knowledge base and verify its superiority within a data-driven image tagging framework. Experimental results over 1 million auxiliary data demonstrate superior performance of the proposed method compared to the state-of-the-art.","PeriodicalId":273567,"journal":{"name":"2012 IEEE International Conference on Multimedia and Expo","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Social Image Tagging by Mining Sparse Tag Patterns from Auxiliary Data\",\"authors\":\"Jie Lin, Junsong Yuan, Ling-yu Duan, Siwei Luo, Wen Gao\",\"doi\":\"10.1109/ICME.2012.170\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"User-given tags associated with social images from photosharing websites (e.g., Flickr) are valuable auxiliary resources for the image tagging task. However, social images often suffer from noisy and incomplete tags, heavily degrading the effectiveness of previous image tagging approaches. To alleviate the problem, we introduce a Sparse Tag Patterns (STP) model to discover noiseless and complementary cooccurrence tag patterns from large scale user contributed tags among auxiliary web data. To fulfill the compactness and discriminability, we formulate the STP model as a problem of minimizing quadratic loss function regularized by bi-layer ℓ1 norm. We treat the learned STP as a universal knowledge base and verify its superiority within a data-driven image tagging framework. Experimental results over 1 million auxiliary data demonstrate superior performance of the proposed method compared to the state-of-the-art.\",\"PeriodicalId\":273567,\"journal\":{\"name\":\"2012 IEEE International Conference on Multimedia and Expo\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Conference on Multimedia and Expo\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICME.2012.170\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Multimedia and Expo","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICME.2012.170","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

与图片分享网站(如Flickr)的社交图片相关联的用户给定标签是图像标记任务的宝贵辅助资源。然而,社交图像经常受到噪声和不完整标签的困扰,严重降低了以往图像标记方法的有效性。为了解决这个问题,我们引入了稀疏标签模式(STP)模型,从辅助web数据中的大量用户贡献标签中发现无噪声和互补的协同标签模式。为了实现STP模型的紧性和可判别性,我们将STP模型表述为一个由双层1范数正则化的二次损失函数的最小化问题。我们将学习到的STP作为一个通用知识库,并在数据驱动的图像标注框架中验证了它的优越性。超过100万辅助数据的实验结果表明,该方法的性能优于现有方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Social Image Tagging by Mining Sparse Tag Patterns from Auxiliary Data
User-given tags associated with social images from photosharing websites (e.g., Flickr) are valuable auxiliary resources for the image tagging task. However, social images often suffer from noisy and incomplete tags, heavily degrading the effectiveness of previous image tagging approaches. To alleviate the problem, we introduce a Sparse Tag Patterns (STP) model to discover noiseless and complementary cooccurrence tag patterns from large scale user contributed tags among auxiliary web data. To fulfill the compactness and discriminability, we formulate the STP model as a problem of minimizing quadratic loss function regularized by bi-layer ℓ1 norm. We treat the learned STP as a universal knowledge base and verify its superiority within a data-driven image tagging framework. Experimental results over 1 million auxiliary data demonstrate superior performance of the proposed method compared to the state-of-the-art.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信