{"title":"使用概率爬坡算法的近似图匹配","authors":"J. Wang, Kaizhong Zhang, G. Chirn","doi":"10.1109/TAI.1994.346466","DOIUrl":null,"url":null,"abstract":"We consider the problem of comparison between labeled graphs. The criterion for comparison is the distance as measured by a weighted sum of the costs of deletion, insertion, and relabel operations on graph nodes and edges. Specifically, we consider two variants of the approximate graph matching problem: Given a pattern graph P and a data graph D, what is the distance between P and D? What is the minimum distance between P and D when subgraphs can be freely removed from D? We first observe that no efficient algorithm con solve either variant of the problem, unless P=NP. Then we present several heuristic algorithms based on probabilistic hill climbing techniques. Finally we evaluate the accuracy and time efficiency of the heuristics by applying them to a set of generated graphs and DNA molecules.<<ETX>>","PeriodicalId":262014,"journal":{"name":"Proceedings Sixth International Conference on Tools with Artificial Intelligence. TAI 94","volume":"120 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Approximate graph matching using probabilistic hill climbing algorithms\",\"authors\":\"J. Wang, Kaizhong Zhang, G. Chirn\",\"doi\":\"10.1109/TAI.1994.346466\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the problem of comparison between labeled graphs. The criterion for comparison is the distance as measured by a weighted sum of the costs of deletion, insertion, and relabel operations on graph nodes and edges. Specifically, we consider two variants of the approximate graph matching problem: Given a pattern graph P and a data graph D, what is the distance between P and D? What is the minimum distance between P and D when subgraphs can be freely removed from D? We first observe that no efficient algorithm con solve either variant of the problem, unless P=NP. Then we present several heuristic algorithms based on probabilistic hill climbing techniques. Finally we evaluate the accuracy and time efficiency of the heuristics by applying them to a set of generated graphs and DNA molecules.<<ETX>>\",\"PeriodicalId\":262014,\"journal\":{\"name\":\"Proceedings Sixth International Conference on Tools with Artificial Intelligence. TAI 94\",\"volume\":\"120 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings Sixth International Conference on Tools with Artificial Intelligence. TAI 94\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TAI.1994.346466\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Sixth International Conference on Tools with Artificial Intelligence. TAI 94","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TAI.1994.346466","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Approximate graph matching using probabilistic hill climbing algorithms
We consider the problem of comparison between labeled graphs. The criterion for comparison is the distance as measured by a weighted sum of the costs of deletion, insertion, and relabel operations on graph nodes and edges. Specifically, we consider two variants of the approximate graph matching problem: Given a pattern graph P and a data graph D, what is the distance between P and D? What is the minimum distance between P and D when subgraphs can be freely removed from D? We first observe that no efficient algorithm con solve either variant of the problem, unless P=NP. Then we present several heuristic algorithms based on probabilistic hill climbing techniques. Finally we evaluate the accuracy and time efficiency of the heuristics by applying them to a set of generated graphs and DNA molecules.<>